作为数学渣,先复习一下已知两点\((x_1, y_1)\), \((x_2, y_2)\),怎么求过两点的一次函数的斜率...

待定系数法代入 \(y = kx + b\) 有:

\(x_1k + b = y_1\)

\(x_2k + b = y_2\)

两式相减有:

\(k = \frac{y_2 - y_1}{x_2 - x_1}\)


故事围绕着《算法竞赛进阶指南》的三一道例题展开:

引子

任务安排 1

发现一个关键性质:

假如我们启动了一个任务\([l, r]\),那么它会对后面造成\(S * \sum_{i = r + 1}^{n} C_i\)的费用。

所以我们可以使用费用提前计算的方式优化算法:

设\(st\)为 \(t\) 的前缀和,设\(sum\)为\(C\)的前缀和

\(f[i]\) 表示安排完前 \(i\) 个任务的最小花费:

$f[i] = min(f[j] + (sum[i] - sum[j]) * t[i] + (sum[n] - sum[j]) * S) $

时间复杂度\(O(N ^ 2)\)

情况1. 斜率、横坐标皆单调递增

任务安排 2

将上题推出的转移式子得\(min\)去掉观察:

\(f[i] = f[j] + (sum[i] - sum[j]) * t[i] + (sum[n] - sum[j]) * S\)

发现我们无法优化\(dp\)的原因是有与 \(i, j\) 两者都有关的乘积项,导致我们没有最优策略:

\(- sum[j] * t[i]\)

斜率优化

考虑把这个式子拆开转换为一次函数:\(y = kx + b\) 的形式。

  • 将与 \(i,\ j\) 都有关系的乘积项作为 \(kx\),其中与 \(i\) 有关的作为 \(k\),与 \(j\) 有关的作为 \(x\)
  • 将只与 \(j\) 有关系的值作为 \(y\)
  • 其余的当做 \(b\)

则以上式子可以化成:

\(\underline{f[j]}_y = \underline{(t[i] + S)}_k * \underline{sum[j]}_x + \underline{f[i] - sum[i] * t[i] - sum[n] * S}_b\)

发现当 \(i\) 确定后,该一次函数的斜率 \(k\) 确定,则截距 \(b\) 越小, \(f[i]\) 越小。

我们将 \((x, y)\) 即 \((sum[j], f[j])\) 放在坐标系上。

则形象化可理解为一条直线从下往上平移,所碰到的第一个点即为最优解。

发现一个点如果被另外两个点围起来,永远不可能作为最优解。

删除了这些点后,发现相邻点之间的斜率为单调递增的,即构成一个凸包:

发现一个斜率 \(k\) 固定的直线所匹配的最优点满足:

  • 其右边的斜率都 $ > k$
  • 其左边的斜率都 \(< k\)

由于这道题斜率 \(t[i] + S\)、横坐标 \(sum[j]\) 皆单调递增。

  1. 由于横坐标递增,所以维护凸包时,每当加入一个点时:
  • 若上面两个点构成的斜率大于这个点和上一个点的斜率,即不满足单调性,可以弹出队尾。即:

    \(\frac{y_{q[tt]} - y_{q[tt - 1]}}{x_{q[tt]} - x_{q[tt - 1]}} >= \frac{y_{i} - y_{q[tt]}}{x_{i} - x_{q[tt]}}\)

  1. 由于斜率递增,所以 \(i + 1\) 的最优解一定在 \(i\) 的右边,所以一旦队头两个点构成的斜率 $ < $ 当前的斜率,可以弹出队头。即满足:

    \(\frac{y_{q[hh + 1]} - y_{q[hh]}}{x_{q[hh + 1]} - x_{q[hh]}} < t[i] + S\)

然后队头的元素即为最优选择。

时间复杂度 \(O(N)\)

\(Tips:\)

  1. 由于除法会有精度问题,可以通过交叉相乘的形式比较大小
#include <cstring>
#include <cstdio>
#include <iostream>
#define x(a) (c[a])
#define y(a) (f[a])
#define k(a) (t[a] + S)
using namespace std;
typedef long long LL;
const int N = 300005;
int n, S;
LL t[N], c[N], q[N], f[N];
int main() {
scanf("%d%d", &n, &S);
for (int i = 1; i <= n; i++) scanf("%lld%lld", t + i, c + i);
for (int i = 1; i <= n; i++) t[i] += t[i - 1], c[i] += c[i - 1];
int hh = 0, tt = 0;
q[0] = 0;
for (int i = 1; i <= n; i++) {
while(hh < tt && (y(q[hh + 1]) - y(q[hh])) <= ((t[i] + S) * (x(q[hh + 1]) - x(q[hh])))) hh++;
f[i] = f[q[hh]] + (c[i] - c[q[hh]]) * t[i] + (c[n] - c[q[hh]]) * S;
while(hh < tt && ((y(q[tt]) - y(q[tt - 1])) * (x(i) - x(q[tt])) >= ((y(i) - y(q[tt])) * (x(q[tt]) - x(q[tt - 1]))))) tt--;
q[++tt] = i;
}
printf("%lld\n", f[n]);
return 0;
}

情况2. 横坐标单调递增

任务安排3

此时的斜率不再递增了,也就是我们不能\(pop\_front\)了,不过我们仍可以维护凸包,然后保持单调性,二分。

时间复杂度\(O(Nlog_2N)\)

#include <cstring>
#include <cstdio>
#include <iostream>
#define x(a) (c[a])
#define y(a) (f[a])
#define k(a) (t[a] + S)
using namespace std;
typedef long long LL;
const int N = 300005;
int n, S, t[N], c[N], q[N];
LL f[N];
int main() {
scanf("%d%d", &n, &S);
for (int i = 1; i <= n; i++) scanf("%lld%lld", t + i, c + i);
for (int i = 1; i <= n; i++) t[i] += t[i - 1], c[i] += c[i - 1];
int hh = 0, tt = 0;
q[0] = 0;
for (int i = 1; i <= n; i++) {
int l = hh, r = tt;
while(l < r) {
int mid = (l + r) >> 1;
if((y(q[mid + 1]) - y(q[mid])) >= ((LL)k(i) * (x(q[mid + 1]) - x(q[mid])))) r = mid;
else l = mid + 1;
}
f[i] = f[q[r]] + (LL)(c[i] - c[q[r]]) * t[i] + (LL)(c[n] - c[q[r]]) * S;
while(hh < tt && ((y(q[tt]) - y(q[tt - 1])) * (x(i) - x(q[tt])) >= ((y(i) - y(q[tt])) * (x(q[tt]) - x(q[tt - 1]))))) tt--;
q[++tt] = i;
}
printf("%lld\n", f[n]);
return 0;
}

例题

运输小猫

设 \(d[i]\) 为从 \(1\) 走到 \(i\) 的距离。

那么每条小猫最佳的出发时间应为 \(a[i] = t[i] - d[h[i]]\),如果要接上这只猫,必须大于这个时间出发。

我们将 \(a\) 数组排序,那么问题等价转换于把 \(m\) 个点划分成 \(p\) 个连续区间,使每一段到右端点的距离之和的总和最小。(内心 \(OS\):这不就是摆渡车的变种吗?)

那么朴素 \(dp\) 便很好列出了:

\(f[k][i]\) 表示将前 \(i\) 只小猫分成 \(k\) 组的最小总和。

设 \(sumA\) 为 \(a\) 数组的前缀和。

\(f[k][i] = min(f[k - 1][j] + a[i] * (i - j) - sumA[i] + sumA[j]) (0 <= j < i)\)


由于这里面有一个非常讨厌的 \(a[i] * -j\),所以我们考虑斜率优化:

\(\underline{f[k - 1][j] + sumA[j]}_y = \underline{a[i]}_k * \underline{j}_x + \underline{f[k][i] - a[i] * i + sumA[i]}_b\)

发现这里的横坐标、斜率都是单调递增,即情况 \(1\)。那么我们可以将不需要的直接踢出即可。

时间复杂度 \(O(PM)\)

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 100005, S = 105;
int n, m, P, d[N], a[N], q[N];
LL f[S][N], sum[N];
LL inline y(int i, int k) {
return f[k - 1][i] + sum[i];
}
int main() {
memset(f, 0x3f, sizeof f);
scanf("%d%d%d", &n, &m, &P);
for (int i = 0; i <= P; i++) f[i][0] = 0;
for (int i = 2; i <= n; i++)
scanf("%d", d + i), d[i] += d[i - 1]; for (int i = 1, h, t; i <= m; i++) {
scanf("%d%d", &h, &t); a[i] = t - d[h];
}
sort(a + 1, a + 1 + m);
for (int i = 1; i <= m; i++) sum[i] = sum[i - 1] + a[i];
for (int k = 1; k <= P; k++) {
int hh = 0, tt = 0;
for (int i = 1; i <= m; i++) {
while (hh < tt && (y(q[hh + 1], k) - y(q[hh], k)) <= (LL)a[i] * (q[hh + 1] - q[hh])) hh++;
f[k][i] = f[k - 1][q[hh]] + (LL)a[i] * (i - q[hh]) - (sum[i] - sum[q[hh]]);
while (hh < tt && (y(q[tt], k) - y(q[tt - 1], k)) * (i - q[tt]) >= (y(i, k) - y(q[tt], k)) * (q[tt] - q[tt - 1])) tt--;
q[++tt] = i;
}
}
printf("%lld\n", f[P][m]);
}

学习笔记:斜率优化DP的更多相关文章

  1. 学习笔记·斜率优化 [HNOI2008]玩具装箱

    \(qwq\)今天\(rqy\)给窝萌这些蒟蒻讲了斜率优化--大概是他掉打窝萌掉打累了吧顺便偷了\(rqy\)讲课用的图 \(Step \ \ 1\) 一点小转化 事实上斜率优化是专门用来处理这样一类 ...

  2. 算法笔记--斜率优化dp

    斜率优化是单调队列优化的推广 用单调队列维护递增的斜率 参考:https://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html 以例1举 ...

  3. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  4. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  5. 【笔记篇】斜率优化dp(一) HNOI2008玩具装箱

    斜率优化dp 本来想直接肝这玩意的结果还是被忽悠着做了两道数论 现在整天浑浑噩噩无心学习甚至都不是太想颓废是不是药丸的表现 各位要知道我就是故意要打删除线并不是因为排版错乱 反正就是一个del标签嘛并 ...

  6. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  7. 动态规划专题(五)——斜率优化DP

    前言 斜率优化\(DP\)是难倒我很久的一个算法,我花了很长时间都难以理解.后来,经过无数次的研究加以对一些例题的理解,总算啃下了这根硬骨头. 基本式子 斜率优化\(DP\)的式子略有些复杂,大致可以 ...

  8. hdu3507Print Article(斜率优化dp)

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  9. HDU-3507Print Article 斜率优化DP

    学习:https://blog.csdn.net/bill_yang_2016/article/details/54667902 HDU-3507 题意:有若干个单词,每个单词有一个费用,连续的单词组 ...

  10. 一本通提高篇——斜率优化DP

    斜率优化DP:DP的一种优化形式,主要用于优化如下形式的DP f[i]=f[j]+x[i]*x[j]+... 学习可以参考下面的博客: https://www.cnblogs.com/Xing-Lin ...

随机推荐

  1. tcp 接收被动关闭 fin

    void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th, unsigned int ...

  2. bss、弱符号强符号、common块、未初始化的全局变量------程序员的自我修养-链接装载与库

  3. PyCharm离线安装PyQt5_tools(QtDesigner)

    目录 下载所需的whl包 安装whl 配置PyCharm 测试 下载所需的whl包 打开链接 PyPI,依此搜索 python_dotenv,PyQt5_sip,PyQt5,pyqt5_tools:基 ...

  4. JWT 实战

    上一篇我们讲解了 JWT 的基本原理和结构 你了解JWT吗?,接下来我们具体实战一下! 1. 引入依赖 <!--引入jwt--> <dependency> <groupI ...

  5. [原题复现][2020i春秋抗疫赛] WEB blanklist(SQL堆叠注入、handler绕过)

    简介 今天参加i春秋新春抗疫赛 一道web没整出来 啊啊啊 好垃圾啊啊啊啊啊啊啊  晚上看群里赵师傅的buuoj平台太屌了分分钟上线 然后赵师傅还分享了思路用handler语句绕过select过滤.. ...

  6. Hadoop大数据平台节点的动态增删

    环境:CentOS 7.4 (1708  DVD) 工具:MobaXterm 一. 节点的动态增加 1. 为新增加的节点(主机)配置免密码登录.使用ssh-keygen和ssh-copy-id命令(详 ...

  7. CorelDRAW多个文件如何批量导出JPG

    好多同学对于CorelDRAW 2018批量导出图片格式的操作不太了解.这种情况比较常见,比如设计了一本画册,在同一个文档中页面比较多,如果一页一页导出那将是一项巨大的工程,这时候我们就会想到CDR的 ...

  8. C语言讲义——字符串库函数

    字符串库函数<string.h> 求字符串长度(不含结束符'\0'****) strlen(str) 字符串赋值(可能造成数组越界) strcpy(str," 水浒传 " ...

  9. redis数据量大时bgsave线程阻塞redis原因

    rt 转载 Latency generated by fork In order to generate the RDB file in background, or to rewrite the A ...

  10. 详解docker部署SpringBoot及如何替换jar包

    关于docker的安装和使用,可以看看之前这两篇文章.Docker从安装部署到Hello World和Docker容器的使用和连接.这篇文章主要介绍如何在docker上部署springboot项目.关 ...