【题解】P3631 [APIO2011]方格染色
很有意思的一道题,所以单独拿出来了。
完整分享看 这里
题目链接
luogu
题意
有一个包含 \(n \times m\) 个方格的表格。要将其中的每个方格都染成红色或蓝色。表格中每个 \(2 \times 2\) 的方形区域都包含奇数个( \(1\) 个或 \(3\) 个)红色方格。例如,下面是一个合法的表格染色方案(R 代表红色,B 代表蓝色):
B B R B R
R B B B B
R R B R B
表格中的一些方格已经染上了颜色.求给剩下的表格染色,使得符合要求的方案数。
思路
每天一道压轴好题。 其实这题跟并查集没啥关系,只是用来维护而已
题意可以简化为:在 \(n\times m\) 的矩阵中放 01,k 个格子已经放好了,要放满,且每个 \(2\times 2\) 的格子中有奇数个1.
由题意可知,任意四个格子(二乘二)的异或值为 1,不断异或相邻的两个“矩形”的异或式子 (如:\(A\oplus B\oplus C\oplus D=C\oplus D\oplus E\oplus F=E\oplus F\oplus G\oplus H=1\),选取相邻的式子得到 \(A\oplus B\oplus E\oplus F=0,A\oplus B\oplus G\oplus H=0\) )
由这个思路推广,设 \(A(1,1),B(2,1),C(1,j),D(i,1)\)
- \(C,D\) 在奇数列上, \(A\oplus B\oplus C\oplus D=0,E\oplus F\oplus G\oplus H=0,=> A\oplus C\oplus F\oplus H=0,A\oplus H=C\oplus F.\)
- \(C,D\) 在偶数列上。\(A\oplus B\oplus C\oplus D=1,E\oplus F\oplus G\oplus H=1.\) 此时,当 \(H\) 在偶数行,\(1\oplus A\oplus H=C\oplus F\) ;如果在奇数行,则有 \(A\oplus H=C\oplus F.\)
综上所述,对于任意 \(H(i,j):\)
如果 \(i|2,j|2\) ,那么 \(1\oplus (1,1)\oplus (i,j)=(1,j)\oplus (i,1)\) ;否则 \((1,1)\oplus (i,j)=(1,j)\oplus (i,1)\)
这样就转化为对 \((1,j),(i,1)\) 的约束。如果 \((1,1)\) 没有给出,那么就要枚举两种情况。
用并查集维护。\(x\oplus y=0\) 时,合并 \((x,y),(x',y')\) ;否则合并 \((x,y'),(x',y)\)。无解特判就是 \(x,x'\in S\) (属于同一个集合)
合并完成之后得到连通块个数 \(sum\) ,枚举所有已知点(注意 \((1,1)\) 不算),去掉他们的连通块,剩下的就是未知个数,\(2^{sum'}\) 即为方案。把 \((1,1)\) 的两种情况相加即可。
注意:此题由于有虚点( \(x',y'\) ),所以空间要两倍。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1e9,N=2e5+10;
int n,m,k,x[N],y[N],z[N],fa[N],g[N];
ll power( ll a,ll b )
{
ll res=1;
for ( ; b; b>>=1,a=a*a%mod )
if ( b&1 ) res=res*a%mod;
return res;
}
int find( int x )
{
if ( x==fa[x] ) return x;
int fat=find( fa[x] ); g[x]^=g[fa[x]];
return fa[x]=fat;
}
int calc( int opt )
{
for ( int i=1; i<=n+m; i++ )
fa[i]=i,g[i]=0;
fa[n+1]=1;
if ( opt==1 )
for ( int i=1; i<=k; i++ )
if ( x[i]>1 && y[i]>1 ) z[i]^=1;
for ( int i=1; i<=k; i++ )
{
int x=:: x[i],y=:: y[i],z=:: z[i];
if ( x!=1 || y!=1 )
{
int fx=find(x),fy=find(y+n),ty=g[x]^g[n+y]^z;
if ( fx!=fy ) fa[fy]=fx,g[fy]=ty;
else if ( ty ) return 0;
}
}
int res=0;
for ( int i=1; i<=n+m; i++ )
if ( i==find(i) ) res++;
return power( 2,res-1 );
}
int main()
{
scanf( "%d%d%d",&n,&m,&k );
int flag=-1;
for ( int i=1; i<=k; i++ )
{
scanf( "%d%d%d",&x[i],&y[i],&z[i] );
if ( (!(x[i]&1)) && (!(y[i]&1)) ) z[i]^=1;
if ( x[i]==1 && y[i]==1 ) flag=z[i];
}
if ( flag!=-1 ) printf( "%d\n",calc( flag ) );
else printf( "%d\n",(calc(0)+calc(1))%mod );
}
【题解】P3631 [APIO2011]方格染色的更多相关文章
- [BZOJ2303][Apio2011]方格染色
[BZOJ2303][Apio2011]方格染色 试题描述 Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好,他们想要表格中每个2 × ...
- BZOJ_2303_[Apio2011]方格染色 _并查集
BZOJ_2303_[Apio2011]方格染色 _并查集 Description Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好, ...
- BZOJ 2303: [Apio2011]方格染色 题解
题目大意: 有n*m的方格,中间的数要么是1,要么是0,要求任意2*2的方格中的数异或和为1.已知一部分格子中的数,求合法的填数的方案数. 思路: 由题意得:a[i][j]^a[i][j+1]^a[i ...
- bzoj 2303: [Apio2011]方格染色
传送门 Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 ...
- BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]
题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...
- BZOJ2303: [Apio2011]方格染色 【并查集】
Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 ...
- [APIO2011]方格染色
题解: 挺不错的一道题目 首先4个里面只有1个1或者3个1 那么有一个特性就是4个数xor为1 为什么要用xor呢? 在于xor能把相同的数消去 然后用一般的套路 看看确定哪些值能确定全部 yy一下就 ...
- BZOJ2303 [Apio2011]方格染色 并查集
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2303 题意概括 现在有一个N*M矩阵,矩阵上只能填数字0或1 现在矩阵里已经有一些格子被填写了数字 ...
- BZOJ2303 APIO2011方格染色(并查集)
比较难想到的是将题目中的要求看做异或.那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1.瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)& ...
随机推荐
- Spring源码之Bean生命周期
https://www.jianshu.com/p/1dec08d290c1 https://www.cnblogs.com/zrtqsk/p/3735273.html 总结 将class文件加载成B ...
- 从ceph对象中提取RBD中的指定文件
前言 之前有个想法,是不是有办法找到rbd中的文件与对象的关系,想了很久但是一直觉得文件系统比较复杂,在fs 层的东西对ceph来说是透明的,并且对象大小是4M,而文件很小,可能在fs层进行了合并,应 ...
- 自动化测试_移动端测试(二)—— Appium原理
一.什么是Appium Appium是一个开源.跨平台的测试框架,可以用来测试原生及混合的移动端应用.Appium支持IOS.Android及FirefoxOS平台.Appium使用WebDriver ...
- dpkg 批量卸载
dpkg -l |grep deepin|awk '{print $2}'|xargs sudo dpkg -P
- SpringBoot整合Xxl-Job
一.下载Xxl-Job源代码并导入本地并运行 Github地址:https://github.com/xuxueli/xxl-job 中文文档地址:https://www.xuxueli.com/xx ...
- tp5 统一返回json格式
控制器调用 public function json(){ if (request()->isPost()) { return jsonData(1,'转换成功',数据(可不填)); } } 公 ...
- 通过Camtasia来添加各种各样的光标效果
在十几二十年前的时候,我们想要学习新的知识需要到学校和培训班才行,但是现在只要有一台电脑.一部手机或者平板,我们在家里也能找到我们喜欢的课程来学习了,微课也因此而生. 同样的,有了想要学习知识的学生, ...
- H5系列之contenteditable
其实这个属性很简单,既然把它放到一个单独的文章来说,他肯定有一些注意点要讲 兼容性很好,兼容所有主流浏览器. 用法很简单,只需要给你需要的标签填上即可. <div contenteditable ...
- request封装
request封装 import requests class RequestsHandler: def __init__(self): self.session = requests.Session ...
- SFTP 连接服务器下载文件方法采坑说明
本篇博客主要记录请求SFTP服务器的一些方法采坑情况. 采坑的方法说明: 1. cd():这个方法用于进入某个目录下. 默认情况,当连接SFTP服务器成功后直接进入用户目录,比如我连接自己本机SFTP ...