DW数据仓库
https://blog.csdn.net/bjweimengshu/article/details/79256504
from Wikipedia
在计算机科学中,数据仓库(data warehouse,简称DW或DWH)也叫做企业数据仓库(EDW),是一种对数据进行分析和报表的系统,是商业智能(business intellgence简称BI)的核心组件。数仓是数据从一个或多个不同的源集成过程中的中心仓库。数仓从一个地方储存实时和历史数据,为所有企业的员工生成数据报表。
上传到数仓的数据来源于运行中的系统(如市场或销售),数仓用来报表的这些数据可能通过运行数据存储,需要额外的操作进行数据清洗,来确保数据质量。
基于数仓的典型的提取、转换、加载(ETL)过程中使用暂存层、数据集成层和访问层来构建其关键功能。暂存层或暂存数据库存储每一个从不同数据源提取出来的原始数据。数据集成层集成数据,集成的数据接着转移到数仓仓库,在这里数据被安排到分级的组,这些组被称为维度表或事实表。事实表和维度表的组合有时被称作星辰结构。用户可以在访问层检索数据。
主要数据源中的数据是干净的、转换过的、分类的,这使得管理者或商业专家在数据挖掘、在线过程分析、市场调查和决策支持时很便利。然而,用来对数据进行检索和分析、提取、转变和加载,管理数据字典的工具,是数仓系统的关键部分。对数仓的许多引用都是用了这种很广泛的解释,因此,数仓广义的定义是商业智能工具,是数据提取、转变、加载到目录中的工具,是管理和检索元数据的工具。
In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis, and is considered a core component of business intelligence.[1] DWs are central repositories of integrated data from one or more disparate sources. They store current and historical data in one single place[2] that are used for creating analytical reports for workers throughout the enterprise.[3]
The data stored in the warehouse is uploaded from the operational systems (such as marketing or sales). The data may pass through an operational data store and may require data cleansing[2] for additional operations to ensure data quality before it is used in the DW for reporting.
The typical extract, transform, load (ETL)-based data warehouse[4] uses staging, data integration, and access layers to house its key functions. The staging layer or staging database stores raw data extracted from each of the disparate source data systems. The integration layer integrates the disparate data sets by transforming the data from the staging layer often storing this transformed data in an operational data store (ODS) database. The integrated data are then moved to yet another database, often called the data warehouse database, where the data is arranged into hierarchical groups, often called dimensions, and into facts and aggregate facts. The combination of facts and dimensions is sometimes called a star schema. The access layer helps users retrieve data.[5]
The main source of the data is cleansed, transformed, catalogued, and made available for use by managers and other business professionals for data mining, online analytical processing, market research and decision support.[6] However, the means to retrieve and analyze data, to extract, transform, and load data, and to manage the data dictionary are also considered essential components of a data warehousing system. Many references to data warehousing use this broader context. Thus, an expanded definition for data warehousing includes business intelligence tools, tools to extract, transform, and load data into the repository, and tools to manage and retrieve metadata.
DW数据仓库的更多相关文章
- DW数据仓库与ODS的区别
这两天接触到ODS,开始很纳闷,有了DW(Data Warehouse)干嘛还要ODS(Operational Data Store),于是不查不知道,一查吓一跳,这里面还有这么多道道,这里总结一下, ...
- [转载]DW数据仓库建模与ETL的实践技巧
一.Data仓库的架构 Data仓库(Data Warehouse DW)是为了便于多维分析和多角度展现而将Data按特定的模式进行存储所建立起来的关系型Datcbase,它的Data基于OLTP源S ...
- 【转】数据仓库ODS、DW和DM概念区分
今天看了一些专业的解释,还是对ODS.DW和DM认识不深刻,下班后花时间分别查了查它们的概念. ODS——操作性数据 DW——数据仓库 DM——数据集市 1.数据中心整体架构 数据中心整体架构 数 ...
- 对数据仓库ODS DW DM的理解
原文链接:https://www.jianshu.com/p/72e395d8cb33 今天看了一些专业的解释,还是对ODS.DW和DM认识不深刻,下班后花时间分别查了查它们的概念. ODS——操作性 ...
- 数据仓库系列 - 缓慢渐变维度 (Slowly Changing Dimension) 常见的三种类型及原型设计
在从 OLTP 业务数据库向 DW 数据仓库抽取数据的过程中,特别是第一次导入之后的每一次增量抽取往往会遇到这样的问题:业务数据库中的一些数据发生了更改,到底要不要将这些变化也反映到数据仓库中?在数据 ...
- 一分钟读懂MySQL分布式消息的处理
在很多MYSQL环境中,对于MYSQL的分布式事物处理一直是个难题,在当前互联网环境中,大多数应用系统是基于SOA的很多复杂接口之间的调用,并且事物之间的处理优先级也是有先后的,所以对于实际入库的数据 ...
- SQL Server 2014里的针对基数估计的新设计(New Design for Cardinality Estimation)
对于SQL Server数据库来说,性能一直是一个绕不开的话题.而当我们去分析和研究性能问题时,执行计划又是一个我们一直关注的重点之一. 我们知道,在进行编译时,SQL Server会根据当前的数据库 ...
- 一.hadoop入门须知
目录: 1.hadoop入门须知 2.hadoop环境搭建 3.hadoop mapreduce之WordCount例子 4.idea本地调试hadoop程序 5.hadoop 从mysql中读取数据 ...
- 缓慢变化维 (Slowly Changing Dimension) 常见的三种类型及原型设计(转)
开篇介绍 在从 OLTP 业务数据库向 DW 数据仓库抽取数据的过程中,特别是第一次导入之后的每一次增量抽取往往会遇到这样的问题:业务数据库中的一些数据发生了更改,到底要不要将这些变化也反映到数据仓库 ...
随机推荐
- 第13.4 使用pip安装和卸载扩展模块
一.pip指令介绍 Python 使用pip来管理扩展模块,包括安装和卸载,具体指令包括: pip install xx: 安装xx模块 pip list: 列出已安装的模块 pip install ...
- CNVD漏洞证书(1)
之前申请了CNVD原创漏洞,踩了坑,记录一下 有很多师傅写过相关的文章: https://blog.csdn.net/qq1124794084/article/details/82657840 htt ...
- edusrc上海交通大学证书
- Python接口测试-使用requests模块发送GET请求
本篇主要记录下使用python的requests模块发送GET请求的实现代码. 向服务器发送get请求:无参数时:r = requests.get(url)带params时:r = requests. ...
- flask中的重定向,渲染,反转视图函数
在学习flask中,重定向,渲染,反转老是不怎么明白,今天明白了其中的点了,来给大家分享下 rend_templete()这个函数就是一个渲染的作用,渲染html的东西. url_for是反转视图函数 ...
- 使用T4模板动态生成NPoco实体类
这是一个妥妥的NPoco类,这是我们在工作开发中,手动去写这个实体类,属实非常心累,字段少无所谓一次两次,数量多了,字段多了,就心态裂开
- 动态svg图片简单制作
一.简介 #topics #no-box-shadow-img { box-shadow: none } 博主头像 svg图片格式不同于其它图片格式,svg图片本质上是一个xml文件,它内部是标记语言 ...
- 团队作业4-Day3
团队作业4-Day3 项目git地址 1. 站立式会议 2. 项目燃尽图 3. 适当的项目截图 今日暂无较大代码更新 4. 代码/文档签入记录(部分) 5. 每人每日总结 吴梓华:今天未进行开发,学习 ...
- 剑指offer二刷——数组专题——斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1). n<=39 我的想法 斐波那契数列定义:F(0)=0,F(1)=1, ...
- Codeforces Edu Round 54 A-E
A. Minimizing the String 很明显,贪心之比较从前往后第一个不一样的字符,所以可以从前往后考虑每一位,如果把它删除,他这一位就变成\(str[i + 1]\),所以只要\(str ...