1. 序列化

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

1.1 为什么要有序列化

为什么要把其他数据类型转换成字符串?
因为能够在网络上传输的只能是bytes,
而能够存储在文件里的只有bytes和str。

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
但是。强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

1.2 序列化的目的

1、以某种存储形式使自定义对象持久化;
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。

2. json模块

Json模块提供了四个功能:dumps、dump、loads、load。

导入json模块:

import json

2.1 loads和dumps

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

2.2 load和dump

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

2.3 ensure_ascii关键字参数

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

2.4 其他参数说明

Serialize obj to a JSON formatted str.(字符串表示的json对象)
Skipkeys:默认值是False,如果dict的keys内的数据不是python的基本类型(str,unicode,int,long,float,bool,None),设置为False时,就会报TypeError的错误。此时设置成True,则会跳过这类key
ensure_ascii:,当它为True的时候,所有非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False即可,此时存入json的中文即可正常显示。)
If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
indent:应该是一个非负的整型,如果是0就是顶格分行显示,如果为空就是一行最紧凑显示,否则会换行且按照indent的数值显示前面的空白分行显示,这样打印出来的json数据也叫pretty-printed json
separators:分隔符,实际上是(item_separator, dict_separator)的一个元组,默认的就是(‘,’,’:’);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。
default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
sort_keys:将数据根据keys的值进行排序。
To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

2.5 json的格式化输出

import json
data = {'username':['李华','二愣子'],'sex':'male','age':16}
json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False)
print(json_dic2)

3. pickle模块

用于序列化的两个模块:

json,用于字符串 和 python数据类型间进行转换。

pickle,用于python特有的类型 和 python的数据类型间进行转换。

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)。

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢?
这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。
如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。
但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了。
所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle。

python基础(20):序列化、json模块、pickle模块的更多相关文章

  1. python全栈开发-json和pickle模块(数据的序列化)

    一.什么是序列化? 我们把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flat ...

  2. python 模块 - 序列化 json 和 pickle

    1,引入 之前我们学习过用eval内置方法可以将一个字符串转成python对象,不过,eval方法是有局限性的,对于普通的数据类型,json.loads和eval都能用,但遇到特殊类型的时候,eval ...

  3. python---基础知识回顾(四)(模块sys,os,random,hashlib,re,序列化json和pickle,xml,shutil,configparser,logging,datetime和time,其他)

    前提:dir,__all__,help,__doc__,__file__ dir:可以用来查看模块中的所有特性(函数,类,变量等) >>> import copy >>& ...

  4. python(31)——【sys模块】【json模块 & pickle模块】

    一.sys模块 import sys sys.argv #命令行参数List,第一个元素是程序本身路径 sys.exit() #退出程序,正常退出时exit(0) sys.version #获取pyt ...

  5. Python之时间模块、random模块、json与pickle模块

    一.时间模块 1.常用时间模块 import time # 时间分为三种格式 #1.时间戳---------------------以秒计算 # start= time.time() # time.s ...

  6. python模块(json和pickle模块)

    json和pickle模块,两个都是用于序列化的模块 • json模块,用于字符串与python数据类型之间的转换 • pickle模块,用于python特有类型与python数据类型之间的转换 两个 ...

  7. Python json和pickle模块

    用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 pickle,用于python特有的类型 和 python的数据类型间进行转换 Json模块提供了四个功能:dumps. ...

  8. python常用模块之json、pickle模块

    python常用模块之json.pickle模块 什么是序列化? 序列化就是把内存里的数据类型转换成字符,以便其能存储到硬盘或者通过网络进行传输,因为硬盘或网络传输时只接受bytes. 为什么要序列化 ...

  9. 常用模块(数据序列化 json、pickle、shelve)

    本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Py ...

随机推荐

  1. go语言之用户输入&类型别名&类型转换

    1.用户输入 package main import "fmt" func main() { //用户输入,程序接受并输出 var v1 int //fmt.Println(&qu ...

  2. 基于 Swoole 的微信扫码登录

    随着微信的普及,扫码登录方式越来越被现在的应用所使用.它因为不用去记住密码,只要有微信号即可方便快捷登录.微信的开放平台原生就有支持扫码登录的功能,不过大部分人还是在用公众平台,所以扫码登录只能自行实 ...

  3. 1025 PAT Ranking 双重排序

    Programming Ability Test (PAT) is organized by the College of Computer Science and Technology of Zhe ...

  4. Sqlite-net 修改版 支持中文和CodeFirst技术

    最近, 做的一个windows 桌面WPF程序, 需要数据库支持.尝试了 sql server 的开发版,使用EF , 效率太低.后来采用sqlite数据库,中间踩坑无数.但最终完美的解决了这些问题. ...

  5. scrapy常用配置

    一.基本配置 1.项目名称 2.爬虫应用路径 SPIDER_MODULES = ['Amazon.spiders'] NEWSPIDER_MODULE = 'Amazon.spiders' 3.客户端 ...

  6. Spring MVC的注解二

    概述 Spring从2.5版本开始引入注解,虽然版本不断变化,但是注解的特性一直被延续下来并不断进行扩展,这里就来记录一下Spring MVC中常用的注解,本文承接前文继续记录@PathVariabl ...

  7. SSH框架之Struts2第二篇

    1.2 知识点 1.2.1 Struts2的Servlet的API的访问 1.2.1.1 方式一 : 通过ActionContext实现 页面: <h1>Servlet的API的访问方式一 ...

  8. PHP intdiv 数学函数

    定义和用法 intdiv - 对除法结果取整 版本支持 PHP4 PHP5 PHP7 不支持 不支持 支持 语法 intdiv ( int $dividend , int $divisor ) int ...

  9. Python 條件式 Condition

    除了重複使用Function,有時我們須檢查結果,依此判斷下個步驟該怎麼進行,如此就需要條件式 condition statement. if ... elif ... ese ( 或 if ... ...

  10. OpenCV:图像的开运算与闭运算

    导包: import numpy as np import cv2 import matplotlib.pyplot as plt def show(image): plt.imshow(image) ...