P3355 骑士共存问题

题意:

  也是一个棋盘,规则是“马”不能相互打到。

思路:

  奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n。

  然后dinic 要用当前弧优化。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = ;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/
const int maxn = ;
int mp[maxn][maxn]; struct E
{
int u,v,val;
int nxt;
}edge[ * maxn*maxn];
int gtot = ,head[maxn*maxn];
void addedge(int u,int v,int val){
edge[gtot].u = u;
edge[gtot].v = v;
edge[gtot].val = val;
edge[gtot].nxt = head[u];
head[u] = gtot++; edge[gtot].u = v;
edge[gtot].v = u;
edge[gtot].val = ;
edge[gtot].nxt = head[v];
head[v] = gtot++;
}
int nx[][] = {
{-,-}, {-,-},{-, },{-,},{,-},{,-},{,},{,}
};
int n,m;
int cal(int i,int j){
return (i-)*n + j;
} int dis[maxn*maxn],cur[maxn*maxn];
bool bfs(int s,int t){
memset(dis, inf, sizeof(dis));
for(int i=s; i<=t; i++) cur[i] = head[i];
queue<int>que;
que.push(s);
dis[s] = ;
while(!que.empty()){
int u = que.front(); que.pop();
for(int i= head[u]; ~i; i = edge[i].nxt){
int v = edge[i].v;
if(edge[i].val > && dis[v] > dis[u] + ){
dis[v] = dis[u] + ;
que.push(v);
}
}
}
return dis[t] < inf;
} int dfs(int u,int t,int maxflow){
if(u == t || maxflow == ) return maxflow; for(int i=cur[u]; ~i; i = edge[i].nxt){
cur[u] = i;
int v = edge[i].v;
if(edge[i].val > && dis[v] == dis[u] + ){
int f = dfs(v, t, min(maxflow, edge[i].val)); if(f > ){
edge[i].val -= f;
edge[i^].val += f;
return f;
}
} }
return ;
}
int dinic(int s,int t){
int flow = ;
while(bfs(s,t)){
while(int f = dfs(s,t,inf)) flow += f;
}
return flow;
}
int main(){
memset(head, -, sizeof(head));
scanf("%d%d", &n, &m);
int s = , t = n*n+;
int sum = n * n;
for(int i=; i<=m; i++){
int x,y;
scanf("%d%d", &x, &y);
mp[x][y] = ;
sum--;
}
for(int i=; i<=n; i++){
for(int j=; j<=n; j++) {
if((i+j)% == ) {
if(mp[i][j]) addedge(s, cal(i,j), );
else addedge(s, cal(i, j), );
}
else {
if(mp[i][j]) addedge(cal(i,j),t, );
else addedge(cal(i,j), t, );
}
}
} for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
if((i+j)% == ) continue;
for(int k=; k<; k++){
int x = i + nx[k][];
int y = j + nx[k][];
if(x < || x > n || y < || y > n) continue;
addedge(cal(i,j), cal(x,y),inf);
}
}
}
cout<<sum - dinic(s, t)<<endl;
return ;
}

P3355 骑士共存问题 二分建图 + 当前弧优化dinic的更多相关文章

  1. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  2. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

  3. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  4. 「CODVES 1922 」骑士共存问题(二分图的最大独立集|网络流)&dinic

    首先是题目链接  http://codevs.cn/problem/1922/ 结果发现题目没图(心情复杂 然后去网上扒了一张图 大概就是这样了. 如果把每个点和它可以攻击的点连一条边,那问题就变成了 ...

  5. hdu 3572 Task Schedule(最大流&amp;&amp;建图经典&amp;&amp;dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  6. P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图

    展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...

  7. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  8. hdu1815 2sat + 二分 + 建图

    题意:       给你两个总部,s1 ,s2,和n个点,任意两点之间都是通过这个总部相连的,其中有一些点不能连在同一个总部上,有一些点可以连接在同一个总部上,总部和总部之间可以直接连接,就是假如a, ...

  9. 【Luogu】P3355骑士共存问题(最小割)

    题目链接 像题面那样把棋盘染成红黄点.发现骑士迈一步能到达的点的颜色一定是跟他所在的格子的颜色不同的.于是(woc哪来的于是?这个性质有这么明显吗?)从源点向所有红点连边,从所有黄点向汇点连边,红点向 ...

随机推荐

  1. Vue中beforeRouterEnter的应用

    一般判断从哪个页面进入时需要判断路由,用到了beforeRouteEnter方法. 注意:在在内部获取不到外部的this,方法.变量等都获取不到.但是vm.XXXXX可以获取到 beforeRoute ...

  2. 基于vue2.0搭建项目流程

    搭建vue2.0项目--myproject 一. 环境搭建: 1 打开命令行(cmd) 2 安装node node官网 3 安装 vue-cli步骤如下: npm install -g vue-cli ...

  3. Kafka学习(四)-------- Kafka核心之Producer

    通过https://www.cnblogs.com/tree1123/p/11243668.html 已经对consumer有了一定的了解.producer比consumer要简单一些. 一.旧版本p ...

  4. Spring Cloud微服务接口这么多怎么调试

    导读 我们知道在微服务架构下,软件系统会被拆分成很多个独立运行的服务,而这些服务间需要交互通信,就需要定义各种各样的服务接口.具体来说,在基于Spring Cloud的微服务模式中,各个微服务会基于S ...

  5. Selenium+java - 日期控件的处理

    前言 一般的日期控件都是input标签下弹出来的,设置日期使用selenium中的sendKeys 方法就可以解决. 但是我们也会碰到下面的时间日期控件(这个时候这个文本框是不允许我们输入时间的)如图 ...

  6. 2、JAVA相关基础的学习和工具

    个人感觉,各种语言的基础知识,例如标识符,运算符等在宏观上几乎是一样的,只是在某些方面上会有一点点差异,因为本人已经有了语言基础,所以对于标识符,关键字,运算符等方面的只是便不作赘述,敬请谅解,如果你 ...

  7. Python.append()与Python.extend()的区别

    lst=[1,2] >>>[1,2] lst.append([3,4]) >>>[1, 2, [3, 4]] lst.extend([3,4]) >>& ...

  8. java集合类的相关转换

    下面的的案例,基本上是以代码为主,文字的描述较少,后期有时间会继续添加. ArrayToList public void ArrayToList() { System.out.println(&quo ...

  9. 机器学习tips

    1 为什么随机梯度下降法能work? https://www.zhihu.com/question/27012077中回答者李文哲的解释   2 随机梯度下降法的好处? (1)加快训练速度(2)噪音可 ...

  10. 写给新手的 Go 开发指南

    转眼加入蚂蚁已经三个多月,这期间主要维护一 Go 写的服务器.虽然用的时间不算长,但还是积累了一些心得体会,这里总结归纳一下,供想尝试 Go 的同学参考. 本文会依次介绍 Go 的设计理念.开发环境. ...