在学各种数各种反演之前把以前做的$FFT$/$NTT$的题整理一遍

还请数论$dalao$口下留情

T1快速傅立叶之二

题目中要求求出

$c_k=\sum\limits_{i=k}^{n-1}a_i*b_{i-k}$

首先可以把$a$翻转,

$c_k=\sum\limits_{i=k}^{n-1}a_{n-1-i}*b_{i-k}$

$c_k=\sum\limits_{i=0}^{n-k-1}a_{n-k-1-i}*b_{i}$

T2力

$f[i]=\sum_{j=1}^{i-1}\frac{q[j]}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q[j]}{(i-j)^2}$

$f[i]=\sum_{k=1}^{min(n-i,i-1)}\frac{q[j-k]-q[j+k]}{k^2}$

构造出一个$g[i]=\frac{1}{i^2}$就是一个裸的卷积了

T4Triple

这道题的FFT并不难想,只是容斥比较复杂,在这里不再赘述

T5万径人踪灭

设$c[i]=\sum\limits_{j=1}^{i-1}[s[i]==s[i-j]]$($s$数组从$1$开始编号)

$ans_i=2^{c[i]}$-不合法的个数,不合法的可以用$hash$二分

求$c[i]$可以分别考虑$a$,$b$的贡献,以a为例:设$b[i]=s[i]=='a'$

那么$c[i]=\sum\limits_{j=1}^{i-1}b[j]*b[i-j]$,便成了卷积的形式,FFT求解即可

T6序列统计

看到乘积果断选择原根化乘法为加法,之后因为N很大,需要用快速幂+NTT

FFT/NTT基础题总结的更多相关文章

  1. $FFT/NTT/FWT$题单&简要题解

    打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...

  2. FFT/NTT中档题总结

    被DeepinC%怕了,把一些题放到这里来 T1Normal 其实这道题放到中档题也不太合适,个人感觉真的很难,机房里好像都是颓的题解 因为期望的可加性,把每个点的贡献单独处理,即求期望深度 考虑$y ...

  3. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  4. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

    众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...

  5. FFT \ NTT总结(多项式的构造方法)

    前言.FFT  NTT 算法 网上有很多,这里不再赘述. 模板见我的代码库: FFT:戳我 NTT:戳我 正经向:FFT题目解题思路 \(FFT\)这个玩意不可能直接裸考的..... 其实一般\(FF ...

  6. 中南大学2019年ACM寒假集训前期训练题集(基础题)

    先写一部分,持续到更新完. A: 寒衣调 Description 男从戎,女守家.一夜,狼烟四起,男战死沙场.从此一道黄泉,两地离别.最后,女终于在等待中老去逝去.逝去的最后是换尽一生等到的相逢和团圆 ...

  7. FFT&NTT数学解释

    FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...

  8. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  9. Android测试基础题(三)

    今天接着给大家带来的是Android测试基础题(三).    需求:定义一个排序的方法,根据用户传入的double类型数组进行排序,并返回排序后的数组 俗话说的好:温故而知新,可以为师矣 packag ...

随机推荐

  1. Batch Normalization、Layer Normalization、Instance Normalization、Group Normalization、Switchable Normalization比较

    深度神经网络难训练一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更 ...

  2. java之运算符的优先级

    优先级 运算符 结合性 1 () [] 从左往右 2 ! +(正) -(负) ++ -- 从右往左 3 * / %  从左往右 4 << >> >>> 从左往 ...

  3. golang--海量用户即使通讯系统

    功能需求: 用户注册 用户登录 显示在线用户列表 群聊 点对点聊天 离线留言

  4. Filter 原理

    二.Filter 原理 2.1 Filter 概述 Filter(过滤器)是 DirectShow 中最基本的概念.DirectShow 是通过 Filter Graph 来管理 Filter 的.F ...

  5. PHPer的项目RESTful API设计规范是怎样的?

    RESTful 是目前最流行的 API 设计规范,用于 Web 数据接口的设计. 什么是RESTful RESTful是一种软件设计风格, 主要用于客户端与服务端交互的软件. 一般来说RESTful ...

  6. Dubbo 一些你不一定知道但是很好用的功能

    dubbo功能非常完善,很多时候我们不需要重复造轮子,下面列举一些你不一定知道,但是很好用的功能: 直连Provider 在开发及测试环境下,可能需要绕过注册中心,只测试指定服务提供者,这时候可能需要 ...

  7. SpringBoot系列之日志框架介绍及其原理简介

    SpringBoot系列之日志框架介绍及其原理简介 1.常用日志框架简介 市面上常用日志框架:JUL.JCL.jboss-logging.logback.log4j.log4j2.slf4j.etc. ...

  8. 简析 Golang IO 包

    简析 Golang IO 包 io 包提供了 I/O 原语(primitives)的基本接口.io 包中定义了四个最基本接口 Reader.Writer.Closer.Seeker 用于表示二进制流的 ...

  9. 【踩坑系列】VS2019提示 ' the package could not be found in c\users\username\nuget\packages\. '

    解决步骤 1.删除对应项目下的 obj 文件夹 2.重新生成该项目

  10. SQLserver创建用户和给用户权限(学)

    数据库基础知识:http://blog.csdn.net/u014600432/article/details/39645701 在SQL Server中创建用户角色及授权(使用SQL语句):http ...