题目描述

小宇从历史书上了解到一个古老的文明。这个文明在各个方面高度发达,交通方面也不例外。 
考古学家已经知道,这个文明在全盛时期有n座城市,编号为1..n。m条道路连接在这些城市之间,每条道路将两个城市连接起来,使得两地的居民可以方便地来往。 
一对城市之间可能存在多条道路。 据史料记载,这个文明的交通网络满足两个奇怪的特征。 
首先,这个文明崇拜数字K,所以对于任何一条道路,设它连接的两个城市分别为u和v,则必定满足1 <=|u - v| <= K。此外,任何一个城市都与恰好偶数条道路相连(0也被认为是偶数)。 
不过,由于时间过于久远,具体的交通网络我们已经无法得知了。 
小宇很好奇这n个城市之间究竟有多少种可能的连接方法,于是她向你求助。  
方法数可能很大,你只需要输出方法数模1000000007后的结果。

100%的数据满足1 <= n <= 30, 0 <= m <= 30, 1 <= K <= 8.

简化版题意:n个点m条边,满足条件:

  1. 每个点的度为偶数。
  2. 每条边连接的顶点u,v编号之差不超过K且没有自环。

求方案数%1000000007后的值。

思路

  挺神的一道状压$DP$题。难点在于状态量的表示。首先我们分析数据范围,发现$K<=8$,那么很显然状态压缩的那一维和K有关,也是我们直接想到状压$DP$的一个原因。

  那么有$f[i][j][s]$表示前$i$个点,连了$j条边,编号为i-k->i$的点的状态为$s$,那么显然$s$表示的是这些点度数的奇偶性。

  然后快乐的开始推。考虑加入一条边的状态转移。然后,就没有然后了。。。。。。(本人做此题也就到此为止了)

  怎么加边?以$i$为一个端点,另一个呢?很显然这个状态不足以满足$DP$转移,我们需要再加一维,表示当前的$i$向哪个点连边。又因为顶点编号之差$<=k$,我们只需要考虑$i向区间[i-k,i-1]$的连边就可以了。那么有$f[i][j][s][l]表示前i个点,连了j条边,[i-k,i]的状态为s,处理当前点i和i-k+l$之间的连边。

  转移不是特别难(这里采用刷表):

  1. $i和i-k+l不连边,有f[i][j][s][l+1]+=f[i][j][s][l]$
  2. $i和i-k+l$连边,有$f[i][j+1][s$ $ \oplus$ $1<<k$ $\oplus$ $1<<l][l]+=f[i][j][s][l]$
  3. 考虑增加一个点,那么必须有:编号为$i-k$的点度数为偶数,$[i-k,i-1]$区间的点和i已经全部转移

  答案就是$f[n][m][0][k]$前$n$个点连接了$m$条边,当且处理的是$n-k+k=n$,即$[n-k,n-1]$全部处理完的情况。

code

#include<bits/stdc++.h>
using namespace std;
const int p=;
const int S=<<;
int f[][][S][];
int n,m,k; int main()
{
scanf("%d%d%d",&n,&m,&k);
f[][][][]=;//初始化,1,2间没有连边也是一种方案
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int s=;s<(<<k+);s++)//枚举状态
{
for(int l=;l<k;l++)//枚举i-k+l
{
f[i][j][s][l+]+=f[i][j][s][l]%=p;//不连边
if(i-k+l>&&j<m)f[i][j+][s^(<<l)^(<<k)][l]+=f[i][j][s][l]%=p;//连边
}
if(!(s&))f[i+][j][s>>][]+=f[i][j][s][k]%=p;//把i-k删去,加入i+1
}
cout<<f[n][m][][k];
}

奇怪的道路——状压DP的更多相关文章

  1. 【BZOJ3195】[Jxoi2012]奇怪的道路 状压DP

    [BZOJ3195][Jxoi2012]奇怪的道路 Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有n座 ...

  2. BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP

    传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...

  3. 【BZOJ-3195】奇怪的道路 状压DP (好题!)

    3195: [Jxoi2012]奇怪的道路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: 184[Submit][Statu ...

  4. bzoj 3195 奇怪的道路 状压dp

    看范围,状压没毛病 但是如果随便连的话给开1<<16,乘上n,m就爆了 所以规定转移时只向回连边 于是想状态数组:f[i][j]表示到i这里i前K位的状态为j(表示奇偶) 发现有条数限制, ...

  5. bzoj3195 [Jxoi2012]奇怪的道路——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3195 看到数据范围就应该想到状压呢... 题解(原来是这样):https://www.cnb ...

  6. 【BZOJ 3195 】[Jxoi2012]奇怪的道路 装压dp

    受惯性思维的影响自动把二进制状态认为是连与不连......... 我们这里二进制状态表示的是奇偶,这样的话我们f[i][j][k]表示的就是前i个城市用了j个边他前k个城市的奇偶状态,然后想想怎么转移 ...

  7. 【bzoj3195】【 [Jxoi2012]奇怪的道路】另类压缩的状压dp好题

    (上不了p站我要死了) 啊啊,其实想清楚了还是挺简单的. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期 ...

  8. 算法复习——状压dp

    状压dp的核心在于,当我们不能通过表现单一的对象的状态来达到dp的最优子结构和无后效性原则时,我们可能保存多个元素的有关信息··这时候利用2进制的01来表示每个元素相关状态并将其压缩成2进制数就可以达 ...

  9. 状压dp专题复习

    状压dp专题复习 (有些题过于水,我直接跳了) 技巧总结 : 1.矩阵状压上一行的选择情况 \(n * 2^n\) D [BZOJ2734][HNOI2012]集合选数 蒻得不行的我觉得这是一道比较难 ...

随机推荐

  1. 02-12 Logistic(逻辑)回归

    目录 逻辑回归 一.逻辑回归学习目标 二.逻辑回归引入 三.逻辑回归详解 3.1 线性回归与逻辑回归 3.2 二元逻辑回归的假设函数 3.2.1 让步比 3.2.2 Sigmoid函数图像 3.3 二 ...

  2. C语言--计算数组的平均值

    //数组 int main() { ]; double sum = 0.0; ; int x; scanf("%d", &x); ) { muber[cnt] = x; c ...

  3. JVM本地方法栈及native方法

    看到虚拟机栈和本地方法栈的区别的时候有点疑惑,因为本地方法栈为虚拟机的Native方法服务.以下转载一篇关于native方法的介绍: http://blog.csdn.net/wike163/arti ...

  4. string字符串转数组

    /** * THis_is_a_cat * This Is A Cat * * Cat A Is This * @author Administrator * */ public class Test ...

  5. STM32SPI连续读写多个字节会产生时间间隔

    最近在做一个音频芯片的项目用到SPI接口配置寄存器,发现只要连续两次向从机发送(接收)帧,当STM32处于主机模式时,这两帧数据中间会产生一个时钟的间隙. 起初我想能不能利用状态标志来去除间隙,后来怎 ...

  6. eclipse提交代码到GitHub

    1.配置git 2.右键项目--> Team--> Share Project... 3.右键项目--> Team--> Commit...

  7. python 可变数量参数 ( 多参数返回求 参数个数,最大值,最大值)

    一. 自定义一串数字求 参数个数,最大值,最大值()---------方法一: def max(*a): m=a[0] p=a[0] n=0 for x in a: if x>m: m=x n+ ...

  8. 《如何学习基于ARM嵌入式系统》笔记整理

    author:Peong time:20190603 如何学习基于ARM嵌入式系统 一.嵌入式系统的概念 从硬件上讲,将外围器件,与CPU集成在一起. 从操作系统上讲,定制符合要求的系统内核 从应用上 ...

  9. 百万年薪python之路 -- 函数初始练习

    1.整理函数相关知识点 2.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. def func(lst): lst = lst[1::2] return l ...

  10. 惊人!Spring5 AOP 默认使用Cglib ?从现象到源码深度分析

    Spring5 AOP 默认使用 Cglib 了?我第一次听到这个说法是在一个微信群里: 真的假的?查阅文档 刚看到这个说法的时候,我是保持怀疑态度的. 大家都知道 Spring5 之前的版本 AOP ...