统计方案数,要么组合数,要么递推(dp)了。

这是有模拟赛历史以来爆炸最狠的一次

  • T1写了正解,也想到开long long,但是开错了地方然后数组开大了结果100->0
  • T3看错题本来简单模拟又给我搞成0分
  • T5差分约束本来很简单但是又被我胡搞炸掉了.....

本题T4,难到爆炸的T2把我困住了.....

先讲讲考试看道题的想法:

思考了一会吗,推出几个结论,然后准备写了,感觉可以短时间A掉,结果被T2困住,一小时只优化掉了一个没啥用的n..(n^5logn的复杂度用爱过题)

然后现在来讲讲正解(也是时候背高精板子了)

首先,很容易想到,对于有0出现的数字,其结果一定是0,从而得出一个结论,对于0的结果就是10^n-9^n(不要让我证明)

然后进一步想到,对于给定k进行质因数分解,然后组合&&排列算方案数(我就是这里走了与dp不同的路)

但是发现这样并不好处理,进一步发现,如果k的质因数有大于10的,那么直接输出0(因为一个数位没法装下两个数)

然后,我在这里就暴毙了。

接下来就是正解了。

有了以上结论,我们能非常不容易地想到dp方程式:

$f[i][j][k][m][l]$表示在前i位中,2,3,5,7分别用了几次;

这个转移是真的令人折服。

for (int i = ; i <= n;i++)
{
for (int j = a2; j >= ;j--)
{
for (int k = a3; k >= ;k--)
{
for (int l = a5; l >= ;l--)
{
for (int m = a7; m >= ;m--)
{
if(j>=)
f[j][k][l][m] = f[j - ][k][l][m] + f[j][k][l][m];//
if(k>=)
f[j][k][l][m] = f[j][k - ][l][m] + f[j][k][l][m];//
if(j>=)
f[j][k][l][m] = f[j - ][k][l][m] + f[j][k][l][m];//
if(l>=)
f[j][k][l][m] = f[j][k][l - ][m] + f[j][k][l][m];//
if(j&&k)
f[j][k][l][m] = f[j - ][k - ][l][m] + f[j][k][l][m];//
if(m>=)
f[j][k][l][m] = f[j][k][l][m - ] + f[j][k][l][m];//
if(j>=)
f[j][k][l][m] = f[j - ][k][l][m] + f[j][k][l][m];//
if(k>=)
f[j][k][l][m] = f[j][k - ][l][m] + f[j][k][l][m];//
}
}
}
}
}

对每一位数进行分解,从而得出的方程,其实也不难想,只是没接触过所以想不到

于是,就可以开心地dp了吗?

不,你想死。

当n<=6的时候,方案数就已经上10万了,那么五十....

嘶~~

没有模数??

只能写高精了。

$$但!是!$$

高精*5维数组,会炸空间的....

所以,还要像01背包那样滚掉一维,所以就出现了上述的4维方程式。

于是,代码(这个高精的缺点就在:它太长了!!!!):

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
#define re register
#define max(x,y) ((x)>(y)?(x):(y))
struct node
{
int len,s[];
node(){memset(s,,sizeof(s)); len=;}
node(int val) {*this=val;}
node(const char *val) {*this=val;}
node operator = (const int &val)
{
re char s[];
sprintf(s,"%d",val);
*this=s;return *this;
}
node operator = (const char *val)
{
len=strlen(val);
while(len>&&val[]=='') ++val,len--;
for(re int i=;i<len;++i) s[i]=val[len-i-]-'';
return *this;
}
inline void deal()
{
while(len>&&!s[len-]) len--;
}
node operator + (const node &a) const
{
node res;res.len=;
re int top=max(len,a.len),add=;
for(re int i=;add||i<top;++i)
{
re int now=add;
if(i<len) now+=s[i];
if(i<a.len) now+=a.s[i];
res.s[res.len++]=now%;
add=now/;
}
return res;
}
node operator - (const node &a) const
{
node res; res.len=;re int del=;
for(re int i=;i<len;++i){
re int now=s[i]-del;
if(i<a.len) now-=a.s[i];
if(now>=) del=;
else del=,now+=;
res.s[res.len++]=now;
}
res.deal(); return res;
}
node operator * (const node &a) const
{
node res; res.len=len+a.len;
for(re int i=;i<len;++i)
for(re int j=;j<a.len;++j)
res.s[i+j]+=s[i]*a.s[j];
for(re int i=;i<res.len;++i)
res.s[i+]+=res.s[i]/,res.s[i]%=;
res.deal(); return res;
}
node operator / (const node &a) const
{
node res,cur=;res.len=len;
for(re int i=len-;~i;--i){
cur=cur*,cur.s[]=s[i];
while(cur>=a)
cur-=a,res.s[i]++;
}
res.deal(); return res;
}
node operator % (const node &a) const
{
node res=*this/a;
return *this-res*a;
}
node operator += (const node &a) {*this=*this+a; return *this;}
node operator -= (const node &a) {*this=*this-a; return *this;}
node operator *= (const node &a) {*this=*this*a; return *this;}
node operator %= (const node &a) {*this=*this%a; return *this;}
bool operator < (const node &a) const
{
if(len!=a.len) return len<a.len;
for(re int i=len-;~i;i--)
if(s[i]!=a.s[i]) return s[i]<a.s[i];
return false;
}
bool operator > (const node &a) const {return a<*this;}
bool operator <= (const node &a) const {return !(*this>a);}
bool operator >= (const node &a) const {return !(*this<a);}
bool operator == (const node &a) const {return !(*this>a||*this<a);}
bool operator != (const node &a) const {return *this>a||*this<a;}
}; inline void print(const node &a)
{
for(re int i=a.len-;~i;--i)
printf("%d",a.s[i]); puts("");
}
int n,k,m;
node f[][][][];
int a2,a3,a5,a7;
void solve()
{
node a,b;
a.s[]=;
b.s[]=;
for(int i=;i<=n;i++)
{
a*=;
b*=;
}
b-=a;
print(b);
}
int main()
{
scanf("%d%d", &n, &k);
if(k==)
{
solve();
return ;
}
int t = k;
while (k % == )
a2++,k /= ;
while (k % == )
a3++, k /= ;
while (k % == )
a5++, k /= ;
while (k % == )
a7++, k /= ;
if(k!=)
{
printf("");
return ;
}
f[][][][].s[] = ;
f[][][][].len = ;
for (int i = ; i <= n;i++)
{
for (int j = a2; j >= ;j--)
{
for (int k = a3; k >= ;k--)
{
for (int l = a5; l >= ;l--)
{
for (int m = a7; m >= ;m--)
{
if(j>=)
f[j][k][l][m] = f[j - ][k][l][m] + f[j][k][l][m];//
if(k>=)
f[j][k][l][m] = f[j][k - ][l][m] + f[j][k][l][m];//
if(j>=)
f[j][k][l][m] = f[j - ][k][l][m] + f[j][k][l][m];//
if(l>=)
f[j][k][l][m] = f[j][k][l - ][m] + f[j][k][l][m];//
if(j&&k)
f[j][k][l][m] = f[j - ][k - ][l][m] + f[j][k][l][m];//
if(m>=)
f[j][k][l][m] = f[j][k][l][m - ] + f[j][k][l][m];//
if(j>=)
f[j][k][l][m] = f[j - ][k][l][m] + f[j][k][l][m];//
if(k>=)
f[j][k][l][m] = f[j][k - ][l][m] + f[j][k][l][m];//
}
}
}
}
}
print(f[a2][a3][a5][a7]);
return ;
}

「NOIP模拟赛」数位和乘积(dp,高精)的更多相关文章

  1. 「NOIP模拟赛」Round 3

    Tag 计数+LIS, 二分+ST表, 计数+记搜 A. 改造二叉树 Description 题面 Solution 如果目标序列非严格递增,或者说目标序列是不下降的,那么答案就是 \(n\) 减去最 ...

  2. 「NOIP模拟赛」Round 2

    Tag 递推,状压DP,最短路 A. 篮球比赛1 题面 \(Milky\ Way\)的代码 #include <cstdio> const int N = 2000, xzy = 1e9 ...

  3. 「CSP-S模拟赛」2019第四场

    「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQO ...

  4. 「CSP-S模拟赛」2019第三场

    目录 T1 「POI2007」山峰和山谷 Ridges and Valleys 题目 考场思路(几近正解) 正解 T2 「JOI 2013 Final」 现代豪宅 题目 考场思路(正解) T3 「SC ...

  5. 【模拟】HHHOJ#251. 「NOIP模拟赛 伍」高精度

    积累模拟经验 题目描述 维护一个二进制数,支持如下操作 "+" 该数加 11 "-" 该数减 11 "*" 该数乘 22 "\&q ...

  6. Solution -「牛客 NOIP 模拟赛」打拳

    \(\mathcal{Description}\)   现 \(2^n\) 个人进行淘汰赛,他们的战力为 \(1\sim 2^n\),战力强者能战胜战力弱者,但是战力在集合 \(\{a_m\}\) 里 ...

  7. 「CSP-S模拟赛」2019第二场

    目录 T1 Jam的计数法 题目 考场思路(正解) T2 「TJOI / HEOI2016」排序 题目 考场思路(假正解) 正解 T3 「THUWC 2017」随机二分图 题目 考场思路 正解 这场考 ...

  8. 「CSP-S模拟赛」2019第一场

    目录 T1 小奇取石子 题目 考场思路 正解 T2 「CCO 2017」专业网络 题目 考场思路 题解 T3 「ZJOI2017」线段树 题目 考场思路 正解 这场考试感觉很奇怪. \(T1.T2\) ...

  9. 「2018-11-05模拟赛」T5 传送机 解题报告

    5.传送机(sent.*) 问题描述: 黄黄同学要到清华大学上学去了.黄黄同学很喜欢清华大学的校园,每次去上课时总喜欢把校园里面的每条路都走一遍,当然,黄黄同学想每条路也只走一遍. 我们一般人很可能对 ...

随机推荐

  1. springboot结合mybatis

    idea中新建springboot项目 pom.xml依赖部分如下 <dependencies> <dependency> <groupId>org.springf ...

  2. 如和用python给女朋友做个专属她的软件

    如和用python给女朋友做个专属她的软件 在学习python的路上如果觉得枯燥就可以想我一样做一些有趣的事情就不会无聊了 python是一门及其有趣的语言. 人们都喜欢记住一些重要的日子,比如说跟女 ...

  3. Python3 os.path() 模块

    os 模块提供了非常丰富的方法用来处理文件和目录.常用的方法如下表所示: 序       号 方法及描述 1 os.access(path, mode):检验权限模式 2 os.chdir(path) ...

  4. 简单cookie入侵

    在当前网站,按下F12键进入开发者模式,在console控制台输入:document.cookie获取cookie值如: 复制你得到cookie值,你或通过每种方式获取Cookie,例如:当别人点击你 ...

  5. Java读源码之LockSupport

    前言 JDK版本: 1.8 作用 LockSupport类主要提供了park和unpark两个native方法,用于阻塞和唤醒线程.注释中有这么一段: 这个类是为拥有更高级别抽象的并发类服务的,开发中 ...

  6. Html中解决点击 a 标签刷新的问题,实现点击时不刷新

    Html中解决点击 a 标签刷新的问题 我们可以在 <a href=""></a>中,将地址属性href设置为“#” 例如 <a href=" ...

  7. Springboot】Springboot整合邮件服务(HTML/附件/模板-QQ、网易)

    介绍 邮件服务是常用的服务之一,作用很多,对外可以给用户发送活动.营销广告等:对内可以发送系统监控报告与告警. 本文将介绍Springboot如何整合邮件服务,并给出不同邮件服务商的整合配置. 如图所 ...

  8. B站自动刷弹幕

    B站自动填弹幕(附带createEvent消息机制) 昨晚看的比赛真的要气死我.RNG 居然又输了... 为了LPL...我写了一个为LPL加油的脚本.希望大家能和我一起为LPL加油! 脚本代码如下: ...

  9. Jenkins邮件收发(qq邮箱)

    首先确认QQ邮箱SMTP服务器的地址和端口号.如下图所示,请谨记,JENKINS全局邮箱配置需要使用: 步骤1:开启QQ邮箱的smtp服务:登陆QQ邮箱-设置-账户-开启POP3/SMTP服务-完成“ ...

  10. Mysql多数据库备份

    备份数据脚本 #!/bin/bash # date是linux的一个命令 date [参数] [+格式] time=` date +%Y_%m_%d_%H_%M_%S ` # 备份输出路径 backu ...