<Graph> Topological + Undirected Graph 310 Union Find 261 + 323 + (hard)305
310. Minimum Height Trees
queue: degree为1的顶点
degree[ i ] : 和 i 顶点关联的边数。
先添加整个图,然后BFS删除每一层degree为1的节点。
class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
List<Integer> result = new ArrayList<>();
if(n == 1){
result.add(0);
return result;
}
int[] degree = new int[n];
Map<Integer, List<Integer>> map = new HashMap<>();
for(int i = 0; i < n; i++) map.put(i, new ArrayList<>());
for(int[] pair : edges){
map.get(pair[0]).add(pair[1]);
map.get(pair[1]).add(pair[0]);
degree[pair[0]]++;
degree[pair[1]]++;
} Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < n; i++){
if(degree[i] == 1) queue.add(i);
} while(!queue.isEmpty()){
List<Integer> list = new ArrayList<>();
int size = queue.size();
for(int i = 0; i < size; i++){
int cur = queue.poll();
list.add(cur);
for(int nei : map.get(cur)){
degree[nei]--;
if(degree[nei] == 1) queue.add(nei);
}
}
result = list;
}
return result;
}
}
261. Graph Valid Tree
Union Find: 并查集,这种方法对于解决连通图的问题很有效,思想是我们遍历节点,如果两个节点相连,我们将其roots值连上,这样可以帮助我们找到环,我们初始化roots数组为-1,然后对于一个pair的两个节点分别调用find函数,得到的值如果相同的话,则说明环存在,返回false,不同的话,我们将其roots值union上
class Solution {
public boolean validTree(int n, int[][] edges) {
int[] nums = new int[n];
Arrays.fill(nums, -1); for(int i = 0; i < edges.length; i++){
int x = find(nums, edges[i][0]);
int y = find(nums, edges[i][1]); if(x == y) return false;
nums[x] = y;
}
return edges.length == n - 1;
} private int find(int[] nums, int i){
if(nums[i] == -1) return i;
return find(nums, nums[i]);
}
}
323. Number of Connected Components in an Undirected Graph
寻找无向图里的连通量。用并查集的方法。
建立一个root数组,下标和节点值相同,此时root[i]表示节点i属于group i,我们初始化了n个部分 (res = n),假设开始的时候每个节点都属于一个单独的区间,然后我们开始遍历所有的edge,对于一条边的两个点,他们起始时在root中的值不相同,这时候我们我们将结果减1,表示少了一个区间,然后更新其中一个节点的root值,使两个节点的root值相同,那么这样我们就能把连通区间的所有节点的root值都标记成相同的值,不同连通区间的root值不相同,这样也能找出连通区间的个数。
1) x != y :两个点原来是不相通的,现在连接了,把后一个点的root更新与x相同。
2) x == y : 两个点是相通的,res不需要减一。
class Solution {
public int countComponents(int n, int[][] edges) {
int res = n;
int[] root = new int[n];
for(int i = 0; i < n; i++){
root[i] = i;
}
for(int[] edge : edges){
int x = find(root, edge[0]);
int y = find(root, edge[1]);
if(x != y){
res--;
root[y] = x;
}
}
return res;
} private int find(int[] root, int i){
while(root[i] != i) i = root[i];
return i;
}
}
305. Number of Islands II
用int nb = n * x + y转为一维数组
class Solution {
int[][] dirs ={{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; public List<Integer> numIslands2(int m, int n, int[][] positions) {
List<Integer> res = new ArrayList<>();
if(m <= 0 || n <= 0) return res; int count = 0;
int[] roots = new int[m * n];
Arrays.fill(roots, -1); for(int[] p : positions){
int root = n * p[0] + p[1];
if(roots[root] != -1){
res.add(count);
continue;
}
roots[root] = root;
count++; for(int[] dir : dirs){
int x = p[0] + dir[0];
int y = p[1] + dir[1];
int nb = n * x + y;
if(x < 0 || x >= m || y < 0 || y >= n || roots[nb] == -1) continue; int rootSurr = find(roots, nb);
if(root != rootSurr){
roots[root] = rootSurr;
root = rootSurr;
count--;
}
}
res.add(count);
}
return res;
} public int find(int[] roots, int i){
while(i != roots[i]) i = roots[i];
return i;
}
}
<Graph> Topological + Undirected Graph 310 Union Find 261 + 323 + (hard)305的更多相关文章
- PLSQL_基础系列03_合并操作UNION / UNION ALL / MINUS / INTERSET(案例)
2014-11-30 Created By BaoXinjian
- UOJ 310 黎明前的巧克力(FWT)
[题目链接] http://uoj.ac/problem/310 [题目大意] 给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选 要求两者选择的数异或和为0,问方案数 [题解] 题目等价 ...
- SQL使用union合并查询结果(转载)
1.UNION的作用 UNION 指令的目的是将两个 SQL 语句的结果合并起来.从这个角度来看, UNION 跟 JOIN 有些许类似,因为这两个指令都可以由多个表格中撷取资料. UNION 的一 ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
- LeetCode 323. Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- 323. Number of Connected Components in an Undirected Graph (leetcode)
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- Number of Connected Components in an Undirected Graph -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
随机推荐
- 如何在一台电脑上同时使用Gitee(码云)和Github?
前言 最近重装了一下系统,用上了 win10,之前电脑上的开发环境和配置都被清除了,由于工作原因我需要经常使用 Gitee(码云)和 Github ,之前配置好了一个,但是不知道怎么同时配置两个,所以 ...
- 打包vue文件,上传到服务器
主要步骤: 1. npm run build生成dist文件夹 2. 将dist文件夹上传到服务器上 3. 服务器上配置nginx,访问路径指向dist文件夹下的index.html,这样当访问ngi ...
- Excel 2003 与 Excel 2007之间有什么不同?
如果您使用Excel 2003已有数年,您可能会意识到使用更多最新版本的Excel(2007.2010.2013或Excel 2016)的人员或组织的数量正在增加.您甚至可能收到了自己的Excel工作 ...
- 如何在Mac上识别和删除损坏的字体
字体看起来像无害的文件,而且大多数时候都是这样.但是,就像任何计算机文件一样,字体可能会损坏或损坏.发生这种情况时,它们可能会导致文档或应用程序出现问题.在Mac上使用“ 字体簿”来验证已安装的字体, ...
- GUI程序分析实例
GUI程序开发概述 GUI程序开发原理 GetMessage(&msg)将消息队列中的消息取出来,在循环中进行处理. GUI程序开发的本质
- Redis令牌桶限流
一 .场景描述 在开发接口服务器的过程中,为了防止客户端对于接口的滥用,保护服务器的资源, 通常来说我们会对于服务器上的各种接口进行调用次数的限制.比如对于某个 用户,他在一个时间段(interval ...
- go语言变量作用域
Go 语言变量作用域 作用域为已声明标识符所表示的常量.类型.变量.函数或包在源代码中的作用范围. Go 语言中变量可以在三个地方声明: 函数内定义的变量称为局部变量 函数外定义的变量称为全局变量 函 ...
- jvm虚拟机笔记<一> 内存区域
运行时数据区域: 程序计数器:字节码的行号指示器. 虚拟机栈:为每个方法创建一个栈帧(存放方法中的局部变量,变量引用等). 本地方法栈:存放本地方法. ------------------------ ...
- jwt认证生成后的token后端解析
一.首先前端发送token token所在的位置headers {'authorization':token的值',Content-Type':application/json} 在ajax写 //只 ...
- 为什么局部内部类中访问同一方法中的变量,该变量一定要是final修饰的
最近有一个疑惑:为什么局部内部类中访问同一方法中的变量,该变量一定要是final修饰的 首先,我们看一个局部内部类的例子: class OutClass { ...