地址 https://www.acwing.com/problem/content/description/850/

题目描述
给定一个n个点m条边的有向图,图中可能存在重边和自环。

请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出-1。

若一个由图中所有点构成的序列A满足:对于图中的每条边(x, y),x在A中都出现在y之前,则称A是该图的一个拓扑序列。

输入格式
第一行包含两个整数n和m

接下来m行,每行包含两个整数x和y,表示点x和点y之间存在一条有向边(x, y)。

输出格式
共一行,如果存在拓扑序列,则输出拓扑序列。

否则输出-1。

数据范围
1≤n,m≤105

样例

输入样例:

输出样例:
  

算法1
拓扑排序流程为BFS 流程如下
1 首先找到第一个入度为0 的点 放入待处理队列,记录答案拓扑数组中 拓扑的必要条件
2 然后从该点连接的各个点 做以下操作:
2.1 删除该边后,查看从该点连接的的点的入度
2.2 如果入度为0 那么该点放入待处理队列,记录答案拓扑数组中, 再次进行BFS 直到待处理队列为空

C++ 代码

#include <iostream>

#include <iostream>
#include <vector>
#include <queue> using namespace std; int n, m;
vector<vector<int>> outvec(, vector<int>()); //入度记录
vector<int> invec(, );; //出度记录 int main()
{
cin >> n >> m; for (int i = ; i < m; i++) {
int start; int end;
cin >> start >> end;
invec[end]++;
outvec[start].push_back(end);
}
queue<int> q;
for (int i = ; i <= n; i++) {
//找到第一个入度为0的点
if (invec[i] == ) {
q.push(i);
break;
}
} vector<int> ret;
while (!q.empty()) {
int idx = q.front();
q.pop(); ret.push_back(idx); //抹掉这个点的所有出度边 与入度计数
for (auto& e : outvec[idx]) {
if (e != -) {
invec[e]--; //该点入度减1 if (invec[e] == ) {
q.push(e);
}
e = -; //抹掉该边
}
}
} if(ret.size() == n)
for (auto& e : ret) {
cout << e << " ";
}
else
cout << -; return ;
} 作者:defddr
链接:https://www.acwing.com/solution/acwing/content/4196/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

acwing 848 有向图的拓扑序列的更多相关文章

  1. C++编程练习(12)----“有向图的拓扑排序“

    设G={V,E}是一个具有 n 个顶点的有向图,V中的顶点序列 v1,v2,......,vn,满足若从顶点 vi 到 vj 有一条路径,则在顶点序列中顶点 vi 必在顶点 vj 之前.则称这样的顶点 ...

  2. 有向图的拓扑排序的理解和简单实现(Java)

    如果图中存在环(回路),那么该图不存在拓扑排序,在这里我们讨论的都是无环的有向图. 什么是拓扑排序 一个例子 对于一部电影的制作过程,我们可以看成是一个项目工程.所有的工程都可以分为若干个" ...

  3. 图结构练习——判断给定图是否存在合法拓扑序列(dfs算法(第一个代码),邻接矩阵(前两个代码),邻接表(第三个代码))

    sdut 2140 图结构练习——判断给定图是否存在合法拓扑序列 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  给定一个有向图 ...

  4. 有向图的拓扑排序算法JAVA实现

    一,问题描述 给定一个有向图G=(V,E),将之进行拓扑排序,如果图有环,则提示异常. 要想实现图的算法,如拓扑排序.最短路径……并运行看输出结果,首先就得构造一个图.由于构造图的方式有很多种,这里假 ...

  5. SDUT OJ 数据结构实验之图论十:判断给定图是否存在合法拓扑序列

    数据结构实验之图论十:判断给定图是否存在合法拓扑序列 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Prob ...

  6. SDUT2140图结构练习——判断给定图是否存在合法拓扑序列

    拓扑序列的判断方法为不存在有向环,代码实现的话有两种,一种是直接去判断是否存在环,较为难理解一些,另一种的话去判断结点入度,如果存在的入度为0的点大于一个,则该有向图肯定不存在一个确定的拓扑序列 #i ...

  7. SDUT-2140_判断给定图是否存在合法拓扑序列

    数据结构实验之图论十:判断给定图是否存在合法拓扑序列 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 给定一个有向图,判 ...

  8. Southern African 2001 框架折叠 (拓扑序列的应用)

    本文链接:http://www.cnblogs.com/Ash-ly/p/5398377.html 题目:考虑五个图片堆叠在一起,比如下面的9 * 8 的矩阵表示的是这些图片的边缘框. 现在上面的图片 ...

  9. 有向图和拓扑排序Java实现

    package practice; import java.util.ArrayDeque; import java.util.Iterator; import java.util.Stack; pu ...

随机推荐

  1. Java 入土之路

    概述 变量与数据类型 运算符与方法 面向对象 异常处理 包装类与常量池 集合框架 多线程 网络通讯协议 socket 编程-概念未发布 socket 编程-java环境未发布 web入门 Servle ...

  2. vue中计算属性的get与set方法

    计算属性get set方法 在vue的计算属性中,所定义的都是属性,可以直接调用 正常情况下,计算属性中的每一个属性对应的都是一个对象,对象中包括了set方法与get方法 computed:{ ful ...

  3. 这7个npm命令将帮助您节省时间

    作为JavaScript开发人员,NPM是我们一直使用的东西,并且我们的脚本在终端上连续运行. 如果我们可以节省一些时间呢? 1.直接从npm打开文档 如果我们可以直接使用npm跳转到软件包的文档怎么 ...

  4. Cesium专栏-卫星轨迹

    Cesium Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精 ...

  5. Git问题汇总

    1.fatal: refusing to merge unrelated histories $git pull origin master --allow-unrelated-histories 2 ...

  6. 测试工程师如何使用 CODING 进行测试管理

    CODING 为您的企业提供从概念到软件开发再到产品发布的全流程全周期软件研发管理,为您的研发团队提供全程助力,帮助研发团队捋清需求.不断迭代.快速反馈并能实时追踪项目进度直到完成.同时 CODING ...

  7. Cesium 加载 gltf 模型

    var viewer = new Cesium.Viewer('cesiumContainer', { /*帮助*/ navigationHelpButton: true, baseLayerPick ...

  8. 28.分类算法---KNN

    1.工作原理: 存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特 ...

  9. qt 自定义控件窗口提升

  10. Redis与Redis 伪集群环境的搭建

    一 .准备工作 GCC编译环境 ruby运行环境 安装ruby脚本运行包 二.环境安装 1.GCC环境 首先,因为redis是由C语言编写的,所以需要安装GCC环境,可以用 gcc -v 命令来检查是 ...