mask-rcnn代码解读(四):rpn_feature_maps数据的处理
此处模拟 rpn_feature_maps数据的处理,最终得到rpn_class_logits, rpn_class, rpn_bbox。
代码如下:
import numpy as np
'''
层与层之间主要是中间变量H与W不一致,则此处模拟2层,分别改为8与4
'''
# 模拟某层,如p3
a1=np.ones((3,8,2)) # rpn_class_logits
b1=np.ones((3,8,2)) # rpn_class
c1=np.ones((3,8,4)) # rpn_bbox
# 模拟某层,如p4
a2=np.ones((3,4,2)) # rpn_class_logits
b2=np.ones((3,4,2)) #rpn_class
c2=np.ones((3,4,4)) #rpn_bbox
layer_outputs = []
'''
以下模拟此处代码,得到layer_outputs:
for p in rpn_feature_maps:
layer_outputs.append(rpn([p]))
'''
d1=[a1,b1,c1]
d2=[a2,b2,c2]
layer_outputs.append(d1)
layer_outputs.append(d2)
'''
outputs = list(zip(*layer_outputs))
'''
output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] # 可跳过
outputs = list(zip(*layer_outputs))
print('outputs',outputs)
'''
此处模拟以下代码,最终得到rpn_class_logits, rpn_class, rpn_bbox值
outputs = [KL.Concatenate(axis=1, name=n)(list(o)) for o, n in zip(outputs, output_names)]
'''
rpn_class_logits = np.concatenate((list(outputs[0])[0],list( outputs[0])[1]),axis=1)
print('rpn_class_logits=',rpn_class_logits)
rpn_class = np.concatenate((list(outputs[1])[0],list( outputs[1])[1]),axis=1)
print('rpn_class=',rpn_class)
rpn_bbox=np.concatenate((list(outputs[2])[0],list( outputs[2])[1]),axis=1)
print('rpn_bbox=',rpn_bbox)
结果如下:
outputs [(array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]])), (array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]])), (array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]), array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]))]
rpn_class_logits= (array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]))
rpn_class= (array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]), array([[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.],
[1., 1.],
[1., 1.]]]))
rpn_bbox= (array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]), array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]))
rpn_bbox= [[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]]
mask-rcnn代码解读(四):rpn_feature_maps数据的处理的更多相关文章
- 使用colab运行深度学习gpu应用(Mask R-CNN)实践
1,目的 Google Colaboratory(https://colab.research.google.com)是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用, ...
- [代码解析]Mask R-CNN介绍与实现(转)
文章来源 DFann 版权声明:如果你觉得写的还可以,可以考虑打赏一下.转载请联系. https://blog.csdn.net/u011974639/article/details/78483779 ...
- Mask R-CNN用于目标检测和分割代码实现
Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- 目标检测论文解读11——Mask R-CNN
目的 让Faster R-CNN能做实例分割的任务. 方法 模型的结构图如下. 与Faster R-CNN相比,主要有两点变化. (1) 用RoI Align替代RoI Pool. 首先回顾一下RoI ...
- [Network Architecture]Mask R-CNN论文解析(转)
前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...
- 论文阅读笔记三十六:Mask R-CNN(CVPR2017)
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN ...
- 物体检测之FPN及Mask R-CNN
对比目前科研届普遍喜欢把问题搞复杂,通过复杂的算法尽量把审稿人搞蒙从而提高论文的接受率的思想,无论是著名的残差网络还是这篇Mask R-CNN,大神的论文尽量遵循著名的奥卡姆剃刀原理:即在所有能解决问 ...
- CVPR2019 | Libra R-CNN 论文解读
作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 目标检测.GAN 推荐理由 这是一篇发表于CVPR2019的paper,是浙江大学和香港中文大学的工作,这篇文章十分有趣,网友戏称 ...
随机推荐
- 848. Shifting Letters
问题描述: 问题规约为:对每一个数组S,移动(shifts[0] + shitfs[1]+...+shitfs[i] )mod 26位 def shiftingLetters(self, S: str ...
- ECharts grid组件离容器的距离
ECharts grid组件离容器的距离 由 Carrie 创建, 最后一次修改 2017-09-04 grid.left | string, number [ default: '10%' ...
- bacula备份工具
源码下载:http://www.bacula.org bacula适合数据业务量巨大,每天都在迅速增长,还需要以tar打包方式进行低级备份而且没有异地容灾策略.Bacula是一个完美的增量备份功能,同 ...
- Python用python-docx读写word文档
python-docx库可用于创建和编辑Microsoft Word(.docx)文件.官方文档:https://python-docx.readthedocs.io/en/latest/index. ...
- MySQL数据库(一)索引
索引的作用是操作数据库时避免全表扫描. 索引的机制 B Tree与B+Tree索引 B(blance) 树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点. 根节点至少有两个子节点 ...
- 使history命令显示时间
添加环境变量HISTTIMEFORMAT就行了 # export HISTTIMEFORMAT='%F %T ' .csharpcode, .csharpcode pre { font-size: ...
- cpu 乱序执行与问题【转】
转自:https://blog.csdn.net/lizhihaoweiwei/article/details/50562732 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议 ...
- Shell命令-搜索文件或目录之which、find
文件及内容处理 - which.find 1. which:查找二进制命令,按环境变量PATH路径查找 which命令的功能说明 which 命令用于查找文件.which 指令会在环境变量 $PATH ...
- caffe初体验
caffe是一个深度学习的框架, 具体我也不太清楚, 可以自行百度吧, 我也是刚刚知道有这么一个框架, 才疏学浅啊. 在安装完caffe, 我的第一个想法就是, 别管他是个啥东西, 总得先让我运行一些 ...
- python3.5.3rc1学习十一:字典与模块
#os模块import oscurDir = os.getcwd()print(curDir) os.mkdir("新建") import timetime.sleep(2)os. ...