Pandas学习(一)——数据的导入
欢迎加入python学习交流群 667279387
学习笔记汇总
Pandas学习(一)–数据的导入
pandas学习(二)–双色球数据分析
pandas学习(三)–NAB球员薪资分析
pandas学习(四)–数据的归一化
pandas学习(五)–pandas学习视频
本文所有的环境:python :3.5 pandas:0.19.2 numpy:1.12.1,sqlalchemy 1.1.9 如果你的环境和这样不一样可能会有 细微差别。
pandas支持的数据格式
pandas作为一个强大的数据处理包,支持比较多的数据处理格式,下面是一些常见格式数据的读取方法,更多请参考:链接
函数 | 描述 |
---|---|
read_table(filepath_or_buffer[, sep, …]) | 读取普通分隔的数据 |
read_csv(filepath_or_buffer[, sep, …]) | 读取csv格式的数据 |
read_excel(io[, sheetname, header, …]) | 读取excel格式的数据 |
read_json([path_or_buf, orient, typ, dtype, …]) | 读取json格式的数据 |
read_html(io[, match, flavor, header, …]) | 读取html格式的 数据 |
read_sql(sql, con[, index_col, …]) | 读取数据库中的数据 |
前面两个一般用的比较多。
常见格式读取示例
read_table举例
example.csv是一个用逗号隔开的数据格式。所以可以用read_table读取,需要指定间隔符为逗号。
import pandas as pd
data_csv = pd.read_table('example.csv',sep=',')
print("data_csv:")
print(data_csv)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
但是有时隔符是不定个数的空格,这时可以用正则表达式。
import pandas as pd
data_txt = pd.read_table('example.txt',sep='\s+')
print("data_txt:")
print(data_txt)
此处由于数据中列名比数据列少1,read_table会推断第一行为列名。
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
read_csv举例
import pandas as pd
data_csv2 = pd.read_csv('example.csv')
print("data_csv2:")
print(data_csv2)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
read_exel示例
import pandas as pd
data_xlsx = pd.read_excel('example.xlsx')
print("data_xlsx:")
print(data_xlsx)
默认是读取第一个 sheet表格的,如果要制定读取sheet表格则需要指定 sheetname参数
data_xlsx2 = pd.read_excel('example.xlsx',sheetname="Sheet2")
print("data_xlsx2:")
print(data_xlsx2)
a b c d message
0 11 12 13 4 hello
1 15 16 17 18 world
2 19 20 21 12 foo
更多参数可以参考官方手册
read_json示例
data_json = pd.read_json('example.json')
print(data_json)
直接打开json文件的内容如下:
[{"a": 1, "b": 2, "c": 3},
{"a": 4, "b": 5, "c": 6},
{"a": 7, "b": 8, "c": 9}]
读取后 输出的格式如下
a b c
0 1 2 3
1 4 5 6
2 7 8 9
read_sql、read_sql_table和read_sql_query示例
import pymysql
import pandas as pd
con = pymysql.connect(host="127.0.0.1",user="root",password="password",db="world")
data_sql=pd.read_sql("select * from city limit 10",con)
print(data_sql)
数据库用的是mysql,数据是里面自带的测试数据。
ID Name CountryCode District Population
0 1 Kabul AFG Kabol 1780000
1 2 Qandahar AFG Qandahar 237500
2 3 Herat AFG Herat 186800
3 4 Mazar-e-Sharif AFG Balkh 127800
4 5 Amsterdam NLD Noord-Holland 731200
在使用read_sql_table和read_sql_query时需要使用sqlalchemy对数据库进行连接。这里仍然使用mysql为例,其他数据库的链接方式有细微差别。
import pandas as pd
import pymysql
from sqlalchemy import create_engine
con = create_engine('mysql+pymysql://root:password@localhost:3306/world')
data_sql2 = pd.read_sql_table("city", con)
print(data_sql2)
data_sql3 = pd.read_sql_query("select * from city limit 5", con)
print(data_sql3)
read_html示例
能够读取带有table标签的网页中的表格。
import pandas as pd
data = pd.DataFrame()
url_list = ['http://www.espn.com/nba/salaries/_/seasontype/4']
for i in range(2, 13):
url = 'http://www.espn.com/nba/salaries/_/page/%s/seasontype/4' % i
url_list.append(url)
for url in url_list:
data = data.append(pd.read_html(url), ignore_index=True)
data = data[[x.startswith('$') for x in data[3]]]
data.to_csv('NAB_salaries.csv',header=['RK','NAME','TEAM','SALARY'], index=False)
获取的数据详情请见pandas学习(三)–NAB球员薪资分析
本文示例代码和文件下载地址:链接
提取密码:l5wo
欢迎python爱好者加入:学习交流群 667279387
Pandas学习(一)——数据的导入的更多相关文章
- Pandas学习1 --- 数据载入
import numpy as np import pandas as pd 数据加载 首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作.pandas提供了非常多的读取数据的函数,分别应用 ...
- pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)
pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...
- pandas学习(四)--数据的归一化
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...
- pandas学习(数据分组与分组运算、离散化处理、数据合并)
pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...
- pandas学习(创建多层索引、数据重塑与轴向旋转)
pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或 ...
- pandas学习(创建数据,基本操作)
pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维ar ...
- GIS案例学习笔记-CAD数据分层导入现有模板实例教程
GIS案例学习笔记-CAD数据分层导入现有模板实例教程 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 1. 原始数据: CAD数据 目标模板 2. 任务:分5个图层 ...
- 【转】Pandas学习笔记(二)选择数据
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- Solr7.x学习(4)-导入数据
导入配置可参考官网:http://lucene.apache.org/solr/guide,http://lucene.apache.org/solr/guide/7_7/ 1.数据准备(MySQL8 ...
随机推荐
- Java设计模式之模板方法模式(Template)
前言: 我们在开发中有很多固定的流程,这些流程有很多步凑是固定的,比如JDBC中获取连接,关闭连接这些流程是固定不变的,变动的只有设置参数,解析结果集这些是根据不同的实体对象“来做调整”,针对这种拥有 ...
- Mybatis精讲(二)---生命周期
目录 回顾 SqlSessionFactoryBuilder SqlSessionFactory openSessionFromDataSource Executor SqlSession Mappe ...
- Appium+python自动化(四十二)-Appium自动化测试框架综合实践- 寿终正寝完结篇(超详解)
1.简介 按照上一篇的计划,今天给小伙伴们分享执行测试用例,生成测试报告,以及自动化平台.今天这篇分享讲解完.Appium自动化测试框架就要告一段落了. 2.执行测试用例&报告生成 测试报告, ...
- # & 等特殊字符会导致传参失败
# & 等特殊字符会导致 post 传参失败 处理方法使用 encodeURIComponent 将字符串转化一下 实例 // toUpperCase() 转化为大写字母 var cateco ...
- VS Code 中使用 GitHub pull request 插件提交代码
VS Code作为一个代码编辑器,受到很多人的喜爱:其中有很多非常有用的插件/扩展功能,也会极大的提高我们的工作效率. 这里介绍一下GitHub pull request,用来向GitHub提交在VS ...
- python:调用bash
利用os模块 python调用Shell脚本,有三种方法: os.system(cmd)返回值是脚本的退出状态码 os.popen(cmd)返回值是脚本执行过程中的输出内容 commands.gets ...
- Linux定时任务 crontab(-l -e)、at、batch
1.周期性定时任务crontab cron['krɒn] 一时间单位 table crontab -e 进入编辑定时任务界面,每一行代表一个定时任务,#开头的行为注释行,一行分成6列 分钟 小时 日 ...
- KDevelop
ctags+vim还是太累了,还是使用IDE好,尤其是c++模板.KDevelop就不错,符号智能推导以及cmake项目管理和配置,还是挺好用的. Android端的ndk开发使用Android St ...
- 记一次LDAP主从同步配置
LDAP主从同步 OpenLDAP在2.3版本之前的同步复制带有一系列缺点如只支持一主多从模式等,在此缺点就不多说,下文着重介绍一下OpenLDAP V2.4以后的同步负复制功能 同步功能 2.4版最 ...
- c#、ASP.NET core 基础模块之一:linq(原创)
最近做数据查询,发现linq 真的比我 印象中 要强大的多,实用的多,所以 我决定 要与linq 来一场 深入交流, 因为linq的基础用法 可以百度一大摞,我就记录点不一样的,结合我做项目使 ...