c++2的幂次方
c++2的幂次方
题目描述
任何一个正整数都可以用2的幂次方表示。
同时约定用括号来表示方次,即a的b次,可以表示为a(b)。
由此可知,137可以表示为:
2(7)+2(3)+2(0)
进一步:
7=2(2)+2+2(0)(2的1次用2表示)
3=2+2(0)
所以137可以表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
按
2
的次幂降次排列。
输入
正整数n(n<=20000)
输出
用0,2表示符合约定的n(在表格中不能有空格)。
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
代码解释
#include <bits/stdc++.h>
#include <stdio.h>
using namespace std;
int n;
int a[17];
void work(int x)
{
if (x == 0)
{
printf("0");
return ;
}
if (x == 2)
{
printf("2");
return ;
}
/* x等于0或者2的时候就不可以拆分,直接返回原值 */
while (1)
{
int i;
for (i=16;a[i]>x;i--);//重点 找出小于x的最大2次幂
if (a[i] != 2)
{
printf("2(");
work (i);//递归 继续拆分
printf(")");
}
else
{
printf("2");
}
if (x - a[i]) printf("+"),x = x - a[i];//拆分完大的部分后仍有剩余,继续拆分小的部分
else return ;//拆分完就退出
}
}
int main()
{
a[0] = 1;
for (int i = 1;i <= 16;i ++) a[i] = a[i - 1] * 2;
/* 预处理出2的1-16次幂 */
scanf("%d",&n);
work (n);
}
c++2的幂次方的更多相关文章
- 中石油—2的幂次方(power)
问题 E: 2的幂次方(power) 时间限制: 1 Sec 内存限制: 64 MB提交: 38 解决: 19[提交][状态][讨论版] 题目描述 任何一个正整数都可以用2的幂次方表示.例如:13 ...
- 洛谷 P1010 幂次方 Label:模拟
题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) ...
- 算法题----称硬币: 2n(并不要求n是2的幂次方)个硬币,有两个硬币重量为m+1, m-1, 其余都是m 分治 O(lgn)找出假币
Description: 有2n个硬币和一个天平,其中有一个质量是m+1, 另一个硬币质量为m-1, 其余的硬币质量都是m. 要求:O(lgn)时间找出两枚假币 注意: n不一定是2的幂次方 算法1: ...
- 2的幂次方(power)
2的幂次方(power) 题目描述 任何一个正整数都可以用2的幂次方表示.例如:137=27+23+20同时约定方次用括号来表示,即ab 可表示为a(b). 由此可知,137可表示为:2(7)+2(3 ...
- 解题笔记-洛谷-P1010 幂次方
0 题面 题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+ ...
- NOI-OJ 2.2 ID:8758 2的幂次方表示
思路 可以把任意一个数转化为2^a+2^b+2^c+...+2^n 例如137的二进制为10001001,这就等效于2^7+2^3+2^0 以上结果如何通过程序循环处理呢?需要把数字n分解为上述公式, ...
- P1010 幂次方 递归模拟
题目描述 任何一个正整数都可以用22的幂次方表示.例如 137=2^7+2^3+2^0137=27+23+20 同时约定方次用括号来表示,即a^bab 可表示为a(b)a(b). 由此可知,13713 ...
- p1010幂次方---(分治)
题目描述 任何一个正整数都可以用222的幂次方表示.例如 137=27+23+20137=2^7+2^3+2^0 137=27+23+20 同时约定方次用括号来表示,即aba^bab 可表示为a(b) ...
- 递归--练习9--noi8758 2的幂次方表示
递归--练习9--noi8758 2的幂次方表示 一.心得 找准子问题就好 二.题目 8758:2的幂次方表示 总时间限制: 1000ms 内存限制: 65536kB 描述 任何一个正整数都可以用 ...
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
随机推荐
- WPF BorderBrush BorderThickness
基本上所有的控件都可以设置BorderBrush BorderThickness 例如TextBox,Button
- jquery QQ微博
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 扩展ASCII码,不同的国家有不同的字符集。Unicode转换为utf8的规则,utf8没有大小端的问题。超过0xFFFF的Unicode字符WINAPI也无能为力(附各种字符编码表及转换表)good
一.概念 1,ASCII ASCII(American Standard Code for Information Interchange),中文名称为美国信息交换标准代码.是 ...
- NOPI 基本读写
//获取cell的数据,并设置为对应的数据类型 public object GetCellValue(ICell cell) { object value = null; try { if (cell ...
- Python Pandas 分析郁达夫《故都的秋》
最近刚学这块,如果有错误的地方还请大家担待. 本文用到的Python包: Ipython, Numpy, Pandas, Matplotlib 故都的秋原文参考:http://www.xiexingc ...
- Centos重启关机命令
Linux centos重启命令: 1.reboot 普通重启 2.shutdown -r now 立刻重启(root用户使用) 3.shutdown -r 10 过10分钟自动重启(root用户 ...
- delphi 程序强制结束自身(两种方法都暴力)
procedure KillSelf;begin Sleep(1000); if not TerminateProcess(GetCurrentProcessId, 0) then WinExe ...
- Linux之mysql安装
查看文件内容的命令有很多:cat, tac, more, less, head, tail, nl. cat由第一行开始显示档案内容:tac从最后一行开始显示,可以看出tac是cat的倒着写:more ...
- OpenSSL所有版本的变化,从1.1开始架构有所变化,生成的lib名称也有所不同了,以及对Qt的影响
The complete explanation is that 1.0.x and 1.1.x do not have the same naming conventions for the gen ...
- XML转义字符 如"&"
解析数据 XML 解析器通常情况下会处理XML文档中的所有文本. 当XML元素被解析的时候,XML元素内部的文本也会被解析,例如: <message>Hello Word!</mes ...