bzoj 2002 弹飞绵羊 lct裸题
上一次用分块过了, 今天换了一种lct(link-cut tree)的写法。
学lct之前要先学过splay。
lct 简单的来说就是 一颗树, 然后每次起作用的都是其中的某一条链。
所以每次如果需要用到一条链, 就要先 access 一下某个位置, 到root, 将其他的非法的东西抠掉。
并且 一个很大的特点就是 假设现在有u,v2个节点, 存在一条边 u -> v, 那么 u 的 父亲指向 v 但是 v 不一定存在 儿子节点指向 u , 也就是说很多时候是单向边。
然后对于整个lct来说, 他由很多个splay组成的。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch tr[x].son[0]
#define rch tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
int n, t;
struct Node{
int son[], pre;
int sz, is_root;
inline void init() {
son[] = son[] = pre = ;
sz = is_root =;
}
}tr[N];
void Push_Up(int x){
if(!x) return ;
tr[x].sz = tr[lch].sz + tr[rch].sz + ;
}
void rotate(int x){
if(tr[x].is_root) return ;
int y = tr[x].pre, z = tr[y].pre;
int k = x == tr[y].son[];
tr[y].son[k] = tr[x].son[k^];
tr[tr[y].son[k]].pre = y;
tr[x].son[k^] = y;
tr[y].pre = x;
tr[x].pre = z;
if(tr[y].is_root) tr[x].is_root = , tr[y].is_root = ;
else tr[z].son[ tr[z].son[] == y] = x;
Push_Up(y); }
void Splay(int x){
while(!tr[x].is_root){
int y = tr[x].pre, z = tr[y].pre;
if(!tr[y].is_root){
if((y == tr[z].son[]) != ( x == tr[y].son[])) rotate(y);
else rotate(x);
}
rotate(x);
}
Push_Up(x);
}
void access(int x){
int y = ;
do{
Splay(x);
tr[rch].is_root = ;
rch = y;
tr[rch].is_root = ;
Push_Up(x);
y = x;
x = tr[x].pre;
}while(x);
}
inline void link(int u, int v){
if(v > n) v = ;
tr[u].pre = v;
}
inline void cut(int x){
access(x);
Splay(x);
tr[lch].is_root = ;
tr[lch].pre = ;
lch = ;
Push_Up(x);
}
inline int Query(int x){
access(x);
Splay(x);
return tr[lch].sz + ;
}
int main(){
scanf("%d", &n);
for(int i = ; i <= n; i++) tr[i].init();
for(int i = ; i <= n; i++){
scanf("%d", &t);
link(i, t+i);
}
int m, op, x, k;
scanf("%d", &m);
while(m--){
scanf("%d", &op);
if(op == ) {
scanf("%d", &x);
printf("%d\n", Query(x+));
}
else {
scanf("%d%d", &x, &k);
cut(x+);
link(x+, x+k+);
}
}
return ;
}
bzoj 2002 弹飞绵羊 lct裸题的更多相关文章
- [bzoj] 2002 弹飞绵羊 || LCT
原题 简单的LCT练习题. 我们发现对于一个位置x,他只能跳到位置x+k,也就是唯一的父亲去.加入我们将弹飞的绵羊定义为跳到了n+1,那么这就形成了一棵树.而因为要修改k,所以这颗树是动态连边的,那么 ...
- BZOJ 2002 弹飞绵羊(分块)
题目:弹飞绵羊 这道题,据说是lct裸题,但是lct那么高级的数据结构,我并不会,所以采取了学长讲过的分块做法,我们对序列分块,可以定义两个数组,其中一个表示从当前位置跳出当前块需要多少步,另一个数组 ...
- bzoj 2002: 弹飞绵羊 Link-Cut-Tree
题目: Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...
- BZOJ 2002 弹飞绵羊
LCT 刚学LCT,对LCT的性质不太熟练,还需要多多练习.. 对每一个点,将其与它能够到达的点连一条虚边.弹出去的话就用n+1这个节点表示. 第一种操作我们需要从LCT的性质入手,问的问题其实就是x ...
- bzoj 2002 弹飞绵羊 分块
正解lct,然而本蒟蒻并不会.... 分块思路很清晰,处理出每个点弹出所在块所需要的步数及出去后的第一个位置 #include<cstdio> #include<cstring> ...
- BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 LCT
2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...
- [Luogu P3203] [HNOI2010]弹飞绵羊 (LCT维护链的长度)
题面 传送门:洛谷 Solution 这题其实是有类似模型的. 我们先考虑不修改怎么写.考虑这样做:每个点向它跳到的点连一条边,最后肯定会连成一颗以n+1为根的树(我们拿n+1代表被弹出去了).题目所 ...
- 洛谷P3203 [HNOI2010] 弹飞绵羊 [LCT]
题目传送门 弹飞绵羊 题目描述 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置, ...
- P3203 [HNOI2010]弹飞绵羊(LCT)
弹飞绵羊 题目传送门 解题思路 LCT. 将每个节点的权值设为\(1\),连接\(i\)和\(i+ki\),被弹飞就连上\(n\),维护权值和\(sum[]\).从\(j\)弹飞需要的次数就是\(sp ...
随机推荐
- 【iOS】XIB 调整视图大小
使用 XIB 创建视图的时候,拖拽 UIView 到画布时,大小是不可调整的,如何自由调整大小呢? 选中 UIView 并打开属性面板,将 Simulated Metrics 中的 Size 设为 F ...
- 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...
- Git应用之eclipse解决冲突代码
最近上班公司框架换成了微服务下面是eclipse 对代码进行管理 1.冲突代码 如果两个人在一个项目上同一文件上更改代码就会出现冲突现象 先用NewFile.jsp 文件做演示 打开eclipse从 ...
- Java Lambda表达式forEach无法跳出循环的解决思路
Java Lambda表达式forEach无法跳出循环的解决思路 如果你使用过forEach方法来遍历集合,你会发现在lambda表达式中的return并不会终止循环,这是由于lambda的底层实现导 ...
- 闯荡Ext-第一篇
今天在网上找到了一本非常好的书:<Ext江湖>,这本书是由大漠穷秋大神写的,刚看到这本书的时候,心里面的那个激动劲啊,本来原先的时候心里面就一直念叨着想要学习Ext,但是苦于找不到好的资料 ...
- 浏览器输入URL到返回页面的全过程
[问题描述] 在浏览器输入www.baidu.com,然后,浏览器显示相应的百度页面,这个过程究竟发生了什么呢? [第一步,解析域名,找到主机] 正常情况下,浏览器会缓存DNS一段时间,一般2分钟到3 ...
- [译]使用golang每分钟处理百万请求
[译]使用golang每分钟处理百万请求 在Malwarebytes,我们正在经历惊人的增长,自从我在1年前加入硅谷的这家公司以来,我的主要职责是为多个系统做架构和开发,为这家安全公司的快速发展以及百 ...
- 精准测试与开源工具Jacoco的覆盖率能力大PK
导读:本文根据实际使用情况,简要分析了精准测试和类Jacoco等传统白盒工具在设计理念.功能和应用场景的异同点,并阐述了覆盖率技术如何在新型企业开发体系中,发挥应有的重要作用. 覆盖率技术可以说是测试 ...
- ssm执行流程
SSM运行流程 1:服务器启动,创建springmvc的前端控制器DispatcherServlet,创建Spring容器对象. 加载spring-servlet.xml .applicationCo ...
- Git原理入门简析
为了获得更好的阅读体验,建议访问原地址:传送门 前言: 之前听过公司大佬分享过 Git 原理之后就想来自己总结一下,最近一忙起来就拖得久了,本来想塞更多的干货,但是不喜欢拖太久,所以先出一版足够入门的 ...