【牛客多校】Han Xin and His Troops
题目:
His majesty chatted with Han Xin about the capabilities of the generals. Each had their shortcomings. His majesty asked, ``How many troops could I lead?" Han Xin replied, ``Your highness should not lead more than 100000." His majesty said, ``And what about you?" ``For your humble servant, the more the merrier!" said Han Xin.
---Records of the Grand Historian
Han Xin was a military general who served Liu Bang during the Chu-Han contention and contributed greatly to the founding of the Han dynasty. Your friend, in a strange coincidence, also named Han Xin, is a military general as well.
One day you asked him how many troops he led. He was reluctant to tell you the exact number, but he told you some clues in certain form, for example:
- if we count by fives, we have three left over;
- if we count by sevens, two are left over;
- ...
You wonder the number of his troops, or he was simply lying. More specifically, you would like to know the minimum possible number of troops he leads, and if the minimum number is too large, then you suspect he was lying.
链接:https://ac.nowcoder.com/acm/contest/890/D
来源:牛客网
输入
3 100
3 2
5 3
7 2
输出
23
输入
4 10000
12 7
15 2
30 5
8 6
输出
he was definitely lying
输入
2 10
11 3
19 7
输出
he was probably lying 题目大意:韩信点兵,给你n个结果,兵队总数%ai=bi,然后求出最后兵队最少到底有多少人。
如果这个数不存在,输出he was definitely lying
如果数量大于给定的门槛m,输出he was probably lying,否则出输出人数。
题解:因为最后的余数并不是完全互质,所以需要使用扩展中国剩余定理。
还有一个坑,就是这些余数可能完全互质,所以最后的M会特别特别大,
我之前使用的是洛谷中国剩余定理模板题的第一个模板,就是因为M特别大,
改写成了java,用大数做就过了。写的有点丑,不要介意。
import java.util.*;
import java.math.*;
import java.security.MessageDigest; public class Main {
static int n;
static BigInteger m,x,y;
static BigInteger[] ai=new BigInteger[200];
static BigInteger[] bi=new BigInteger[200];
public static void main(String[] args) {
Scanner cin=new Scanner(System.in);
n=cin.nextInt();
m=cin.nextBigInteger();
for(int i=1;i<=n;i++)
{
bi[i]=cin.nextBigInteger();
ai[i]=cin.nextBigInteger();
}
BigInteger ans = excrt();
long flag=-1;
if (ans.compareTo(BigInteger.valueOf(flag))==0)
System.out.print("he was definitely lying\n");
else if(ans.compareTo(m)!=-1&&ans.compareTo(m)!=0)
System.out.print("he was probably lying\n");
else System.out.print(ans);
} public static BigInteger excrt()
{
BigInteger k;
BigInteger ans = ai[1];
BigInteger M=bi[1];
for (int i = 2; i <= n; i++)
{
BigInteger a = M, b = bi[i];
BigInteger c=ai[i].subtract(ans.mod(b)).add(b).mod(b);
BigInteger gcd = exgcd(a, b), bg = b .divide(gcd);
long flag=-1;
if (c.mod(gcd).compareTo(BigInteger.ZERO)!=0) return BigInteger.valueOf(flag); x = mul(x,c.divide(gcd), bg);
ans=ans.add(x.multiply(M));
M =M.multiply(bg);
ans = (ans.mod(M).add(M)).mod(M);
}
return (ans.mod(M).add(M)).mod(M);
} public static BigInteger mul(BigInteger a, BigInteger b, BigInteger mod)
{
BigInteger res = BigInteger.ZERO;
while (b.compareTo(BigInteger.ZERO)>0)
{
if (b.mod(BigInteger.valueOf((long)2)).compareTo(BigInteger.ZERO)>0) res = res.add(a).mod(mod);
a = a.add(a).mod(mod);
b = b.divide(BigInteger.valueOf((long)2));
}
return res;
} public static BigInteger exgcd(BigInteger a, BigInteger b)
{
if (b.compareTo(BigInteger.ZERO)==0)
{
x = BigInteger.ONE; y = BigInteger.ZERO;
return a;
}
BigInteger gcd = exgcd(b, a.mod(b));
BigInteger tp = x;
x = y; y = tp.subtract(a.divide(b).multiply(y));
return gcd;
}
}
贴一下洛谷模板题:https://www.luogu.org/problem/P4777
模板来源:https://blog.csdn.net/niiick/article/details/80229217
C++模板代码:
//niiick
#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt; lt read()
{
lt f=,x=;
char ss=getchar();
while(ss<''||ss>''){if(ss=='-')f=-;ss=getchar();}
while(ss>=''&&ss<=''){x=x*+ss-'';ss=getchar();}
return f*x;
} const int maxn=;
int n;
lt ai[maxn],bi[maxn]; lt mul(lt a,lt b,lt mod)
{
lt res=;
while(b>)
{
if(b&) res=(res+a)%mod;
a=(a+a)%mod;
b>>=;
}
return res;
} lt exgcd(lt a,lt b,lt &x,lt &y)
{
if(b==){x=;y=;return a;}
lt gcd=exgcd(b,a%b,x,y);
lt tp=x;
x=y; y=tp-a/b*y;
return gcd;
} lt excrt()
{
lt x,y,k;
lt M=bi[],ans=ai[];//第一个方程的解特判
for(int i=;i<=n;i++)
{
lt a=M,b=bi[i],c=(ai[i]-ans%b+b)%b;//ax≡c(mod b)
lt gcd=exgcd(a,b,x,y),bg=b/gcd;
if(c%gcd!=) return -; //判断是否无解,然而这题其实不用 x=mul(x,c/gcd,bg);
ans+=x*M;//更新前k个方程组的答案
M*=bg;//M为前k个m的lcm
ans=(ans%M+M)%M;
}
return (ans%M+M)%M;
} int main()
{
n=read();
for(int i=;i<=n;++i)
bi[i]=read(),ai[i]=read();
printf("%lld",excrt());
return ;
}
【牛客多校】Han Xin and His Troops的更多相关文章
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- 牛客多校第一场 B Inergratiion
牛客多校第一场 B Inergratiion 传送门:https://ac.nowcoder.com/acm/contest/881/B 题意: 给你一个 [求值为多少 题解: 根据线代的知识 我们可 ...
- 2019牛客多校第二场 A Eddy Walker(概率推公式)
2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...
- 牛客多校第三场 F Planting Trees
牛客多校第三场 F Planting Trees 题意: 求矩阵内最大值减最小值大于k的最大子矩阵的面积 题解: 矩阵压缩的技巧 因为对于我们有用的信息只有这个矩阵内的最大值和最小值 所以我们可以将一 ...
- 牛客多校第三场 G Removing Stones(分治+线段树)
牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...
- 牛客多校第四场sequence C (线段树+单调栈)
牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...
- 牛客多校第3场 J 思维+树状数组+二分
牛客多校第3场 J 思维+树状数组+二分 传送门:https://ac.nowcoder.com/acm/contest/883/J 题意: 给你q个询问,和一个队列容量f 询问有两种操作: 0.访问 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 2020牛客多校第八场K题
__int128(例题:2020牛客多校第八场K题) 题意: 有n道菜,第i道菜的利润为\(a_i\),且有\(b_i\)盘.你要按照下列要求给顾客上菜. 1.每位顾客至少有一道菜 2.给顾客上菜时, ...
随机推荐
- Ubuntu下Mongo的安装和笔记
在linux下的安装 打开https://www.mongodb.com/download-center#community选择linux然后选择自己的Version复制DOWNLOAD旁边的链接 打 ...
- 【Java】Class JavaLaunchHelper is implemented in both ** and **
详细问题描述如下: objc[64179]: Class JavaLaunchHelper is implemented in both /Library/Java/JavaVirtualMachin ...
- 【iOS】UIAlertController 弹出框
UIAlertView 虽然还能用,但已经废弃了.因此以后尽量用 UIAlertController.示例代码如下: UIAlertController *alert = [UIAlertContro ...
- 【iOS】iOS CocoaPods 整理
github 上下载 Demo 时第一次遇到这个情况,当时有些不知所措,也没怎么在意,后来项目调整结构时正式见到了这个,并且自己去了解学习了. CocoaPods安装和使用教程 这篇文章写得很好!ma ...
- mysql docker 主从配置
主从复制相关 前置条件: docker安装的mysql是5.7.26版本 1. 编排docker-compose文件如下: version: '3' services: mysql-master: v ...
- dotnetcore 与 hbase 之二——thrift 客户端的制作
说明 在上一篇文章dotnetcore 与 hbase 之一--hbase 环境准备结束后,我们已经有了 hbase 数据库环境.接下来就可以利用 thrift 生成 c# hbase 客户端了.如果 ...
- 把Jar包加入windows系统服务
之前在服务器上不一个Java服务时候,总是开着一堆黑框框,非常不雅,重点是极其容易误关,所以把可执行Jar文件加入Windows系统服务,看起来是个非常不错的选择!(实际上也确实是非常不错的选择) ! ...
- 【简洁易懂】CF372C Watching Fireworks is Fun dp + 单调队列优化 dp优化 ACM codeforces
题目大意 一条街道有$n$个区域. 从左到右编号为$1$到$n$. 相邻区域之间的距离为$1$. 在节日期间,有$m$次烟花要燃放. 第$i$次烟花燃放区域为$a_i$ ,幸福属性为$b_i$,时间为 ...
- 分享我的GD32F450的IAP过程
最近一个项目使用GD32F450VI+ESP8266需要做远程升级,基本参考正点原子IAP的那一章节,但是在GD32F450上却遇到了问题,无法跳转,然后使用正点原子的开发板stm32f429,以及s ...
- Mermaid
graph TD; A-->B; A-->C; B-->D; C-->D;