【Offer】[62] 【圆圈中最后剩下的数字】
题目描述
0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。
思路分析
- 采用链表来存放数据,每次对长度取余来实现循环:
- 将所有数字放入LinkedList链表中(LinkedList比ArrayList更适合增删操作)。假设当前删除的结点下标为removeIndex,则下一个要删除的结点的下标为:(removeIndex+m-1)%list.size(),通过取余符号可以实现类型循环的操作
- 注:没必要用循环链表,反而会更麻烦了。
- 数学推导规律
n个数字的圆圈,不断删除第m个数字,我们把最后剩下的数字记为f(n,m)
。
n个数字中第一个被删除的数字是(m-1)%n, 我们记作k,k=(m-1)%n
。
那么剩下的n-1个数字就变成了:0,1,……k-1,k+1,……,n-1
,我们把下一轮第一个数字排在最前面,并且将这个长度为n-1的数组映射到0~n-2。
原始数字:k+1,……, n-1,0, 1,……k-1
映射数字:0,……,n-k-2, n-k-1, n-k,……n-2
把映射数字记为x,原始数字记为y,那么映射数字变回原始数字的公式为y=(x+k+1)%n。
在映射数字中,n-1个数字,不断删除第m个数字,由定义可以知道,最后剩下的数字为f(n-1,m)
。我们把它变回原始数字,由上一个公式可以得到最后剩下的原始数字是(f(n-1,m)+k+1)%n
,而这个数字就是也就是一开始我们标记为的f(n,m)
,所以可以推得递归公式如下:
f(n,m) =(f(n-1,m)+k+1)%n
将k=(m-1)%n
代入,化简得到:
f(n,m) =(f(n-1,m)+m)%n
f(1,m) = 0
代码中可以采用循环或者递归的方法实现该递归公式。时间复杂度为O(n),空间复杂度为O(1)。
测试用例
- 功能测试:输入的m小于n,比如从最初有5个数字的圆圈中每次删除第2、3个数字;输入的m大于或者等于n,比如从最初有6个数字的圆圈中每次删除第6、7个数字。
- 特殊输入测试:圆圈中有0个数字。
- 性能测试:从最初有4000个数字的圆圈中每次删除第997个数字。
Java代码
public class Offer062 {
public static void main(String[] args) {
test1();
test2();
test3();
}
public static int LastRemaining(int n, int m) {
return Solution1(n, m);
}
/*
* 方法一:采用推导出来的方法
*/
public static int Solution1(int n, int m) {
if(n<1 || m<1)
return -1; //出错
int last=0;
for(int i=2;i<=n;i++){
last=(last+m)% i; //这里是i不是n!!!
}
return last;
}
/*
* 方法二:采用链表来存放,每次对长度取余来实现循环
*/
public static int Solution2(int n, int m) {
if(n<1 || m<1)
return -1; //出错
LinkedList<Integer> list = new LinkedList<Integer>();
for(int i=0;i<n;i++)
list.add(i);
int removeIndex=0;
while(list.size()>1){
removeIndex=(removeIndex+m-1)%list.size();
list.remove(removeIndex);
}
return list.getFirst();
}
private static void test1() {
}
private static void test2() {
}
private static void test3() {
}
}
代码链接
【Offer】[62] 【圆圈中最后剩下的数字】的更多相关文章
- 剑指 Offer 62. 圆圈中最后剩下的数字 + 约瑟夫环问题
剑指 Offer 62. 圆圈中最后剩下的数字 Offer_62 题目描述 方法一:使用链表模拟 这种方法是暴力方法,时间复杂度为O(nm),在本题中数据量过大会超时. 方法二:递归方法 packag ...
- [剑指offer]62.圆圈中最后剩下的数字
62.圆圈中最后剩下的数字 题目 0,1,...,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成 ...
- 【Java】 剑指offer(62) 圆圈中最后剩下的数字
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 0, 1, …, n-1这n个数字排成一个圆圈,从数字0开始每 ...
- Java实现 LeetCode 面试题62. 圆圈中最后剩下的数字(约瑟夫环)
面试题62. 圆圈中最后剩下的数字 0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆 ...
- 【LeetCode】面试题62. 圆圈中最后剩下的数字
题目:面试题62. 圆圈中最后剩下的数字 这题很有意思,也很巧妙,故记录下来. 官方题解思路,是约瑟夫环的数学解法: 我们将上述问题建模为函数 f(n, m),该函数的返回值为最终留下的元素的序号. ...
- 《剑指offer》面试题62. 圆圈中最后剩下的数字
问题描述 0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆圈,从数字0开始每次删除第 ...
- [LeetCode]面试题62. 圆圈中最后剩下的数字(数学)
题目 0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 例如,0.1.2.3.4这5个数字组成一个圆圈,从数字0开始每次删除第3 ...
- 【LeetCode】面试题62. 圆圈中最后剩下的数字 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 约瑟夫环 日期 题目地址:https://leetco ...
- 剑指offer——72圆圈中最后剩下的数字
题目描述 每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后,他随机指 ...
- 【剑指offer】圆圈中最后剩下的数字(约瑟夫问题),C++实现
原创博文,转载请注明出处! # 题目 # 思路 本题即为典型的约瑟夫问题,通过递推公式倒推出问题的解.原始问题是从n个人中每隔m个数踢出一个人,原始问题变成从n-1个人中每隔m个数踢出一个人-- ...
随机推荐
- DesignPattern系列__10单例模式
单例模式介绍 单例模式,是为了确保在整个软件体统中,某个类对象只有一个实例,并且该类通常会提供一个对外获取该实例的public方法(静态方法). 比如日志.数据库连接池等对象,通常需要且只需要一个实例 ...
- HBase MapReduce 一些 ClassNotFoundException 所缺少的jar包
我们在用 java 操作 HBase 时,可能会出现相关的 ClassNotFoundException 等异常信息,但是我们又不想把 HBase lib 下的所有jar包全部导入到工程,因为会有 ...
- Spring Cloud 相关资料链接
Spring Cloud中文网:https://springcloud.cc/ Spring Cloud API:https://springcloud.cc/spring-cloud-dalston ...
- Spark 系列(七)—— 基于 ZooKeeper 搭建 Spark 高可用集群
一.集群规划 这里搭建一个 3 节点的 Spark 集群,其中三台主机上均部署 Worker 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop0 ...
- IDEA+maven搭建scala开发环境(spark)(半转载)
以下内容部分来自于https://zhuanlan.zhihu.com/p/23141509,我尝试了一遍,然后添加了一些图片.. 其实我觉得在IDEA中使用scala插件然后创建project的时候 ...
- 【0808 | Day 11】文件的高级应用/修改以及函数的定义/使用/参数
文件的高级应用 一.三种模式 'r+'模式 with open('test.py','r',encoding = 'utf8') as fr: print(fr.writable()) fr.writ ...
- win10文件备份、文件同步方案
用个人版onedrive同步重要数据,数据安全有保障,但免费版只有15G空间,需要合理分配.(201907与别人合租家庭版,空间1T充足) google-drive可以同步指定的文件夹,但空间也只有1 ...
- LoRaWAN stack移植笔记(六)_调试2
前言 调试的过程中碰到的问题基本都是以前没有遇到过的,而且需要对整个协议栈及射频方面的工作流程较熟悉才能找到问题的原因,需要多读SX1276的数据手册以及与射频芯片的物理层通信例程和MAC层通信例程进 ...
- 朴素贝叶斯python代码实现(西瓜书)
朴素贝叶斯python代码实现(西瓜书) 摘要: 朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候, 使用起来非常的方便.原理简单,训练效率高,拟合效果 ...
- random库的使用
一.random库介绍 random库是使用随机数的Python标准库 伪随机数:采用梅森旋转算法生成的(伪)随机序列中元素 random库主要用于生成随机数 使用random库:import ran ...