CSUOJ1811 Tree Intersection (启发式合并)
Input
OutputFor each set, (n-1) integers R 1,R 2,…,R n-1.Sample Input
4
1 2 2 1
1 2
2 3
3 4
5
1 1 2 1 2
1 3
2 3
3 5
4 5
Sample Output
1
2
1
1
1
2
1
Hint
题解:题意就是,给以一颗树n个节点,每个节点有一种颜色,然年后对于n-1条边,如果把一条边截断,让你求两颗子树有多少种相同的颜色,依次输入每一条边的答案。
启发式搜索,分别记录点和边的答案;如果点u和其子树某种颜色的数量已经等于总量了,那么对于该子树外的一部分,就没有该中颜色了,答案-1;如果小于总量,答案+1;
然后更新u节点该颜色的数量即可;
参考代码:
#include<bits/stdc++.h>
using namespace std;
#define clr(a,val) memset(a,val,sizeof (a))
#define pb push_back
#define fi first
#define se second
typedef long long ll;
const int maxn=1e5+;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
struct Edge{
int to,index,nxt;
} edge[maxn<<];
int n,head[maxn<<],tot;
int col[maxn],sum[maxn],ans[maxn],res[maxn<<];//ans[u]表示u点及子节点的答案, res[edge]表示边的答案
map<int,int> cnt[maxn];//cnt[u][color] 表示u点子树color颜色有多少个节点 inline void Init()
{
clr(head,-);clr(sum,); tot=;
for(int i=;i<=n;++i) cnt[i].clear();
} inline void addedge(int u,int v,int id)
{
edge[tot].to=v;
edge[tot].index=id;
edge[tot].nxt=head[u];
head[u]=tot++;
} inline void dfs(int u,int fa,int id)
{
cnt[u][col[u]]=;
ans[u] = cnt[u][col[u]]<sum[col[u]]?:;
for(int e=head[u];~e;e=edge[e].nxt)
{
int v=edge[e].to;
if(v==fa) continue;
dfs(v,u,edge[e].index);
if(cnt[u].size()<cnt[v].size())
{
swap(cnt[u],cnt[v]);
swap(ans[u],ans[v]);
}
map<int,int>::iterator it;
for(it=cnt[v].begin();it!=cnt[v].end();it++)
{
if(!cnt[u][(*it).fi] && (*it).se<sum[(*it).fi]) ++ans[u];
else if(cnt[u][(*it).fi] && cnt[u][(*it).fi]+(*it).se==sum[(*it).fi]) --ans[u];
cnt[u][(*it).fi]+=(*it).se;//加上子树的数量
}
}
res[id]=ans[u];
} int main()
{
while(~scanf("%d",&n))
{
Init();
for(int i=;i<=n;++i) col[i]=read(),sum[col[i]]++;
for(int i=;i<n;++i)
{
int u=read(),v=read();
addedge(u,v,i);addedge(v,u,i);
}
dfs(,,);
for(int i=;i<n;++i) printf("%d\n",res[i]);
} return ;
}
CSUOJ1811 Tree Intersection (启发式合并)的更多相关文章
- csu oj 1811: Tree Intersection (启发式合并)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1811 给你一棵树,每个节点有一个颜色.问删除一条边形成两棵子树,两棵子树有多少种颜色是有 ...
- dsu on tree 树上启发式合并 学习笔记
近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...
- dsu on tree[树上启发式合并学习笔记]
dsu on tree 本质上是一个 启发式合并 复杂度 \(O(n\log n)\) 不支持修改 只能支持子树统计 不能支持链上统计- 先跑一遍树剖的dfs1 搞出来轻重儿子- 求每个节点的子树上有 ...
- dsu on tree (树上启发式合并) 详解
一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...
- AGC 014E.Blue and Red Tree(思路 启发式合并)
题目链接 \(Description\) 给定两棵\(n\)个点的树,分别是由\(n-1\)条蓝边和\(n-1\)条红边组成的树.求\(n-1\)次操作后,能否把蓝树变成红树. 每次操作是,选择当前树 ...
- dsu on tree(树上启发式合并)
简介 对于一颗静态树,O(nlogn)时间内处理子树的统计问题.是一种优雅的暴力. 算法思想 很显然,朴素做法下,对于每颗子树对其进行统计的时间复杂度是平方级别的.考虑对树进行一个重链剖分.虽然都基于 ...
- CSU 1811: Tree Intersection(线段树启发式合并||map启发式合并)
http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1811 题意:给出一棵树,每一个结点有一个颜色,然后依次删除树边,问每次删除树边之后,分开的两个 ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- 树上启发式合并(dsu on tree)学习笔记
有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...
随机推荐
- 201871010114-李岩松《面向对象程序设计(java)》第十二周学习总结
项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p ...
- Java线程池中线程的状态简介
首先明确一下线程在JVM中的各个状态(JavaCore文件中) 1.死锁,Deadlock(重点关注) 2.执行中,Runnable(重点关注) 3.等待资源,Waiting on condition ...
- 【R语言学习笔记】 Day1 CART 逻辑回归、分类树以及随机森林的应用及对比
1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: ...
- C#索引器与数组的区别
1.索引器的索引值类型不限定为整数 2.索引器允许重载 3.索引器不是一个变量 4.索引器以函数签名方式this标识,而属性采用名称来标识,名称可以任意 5.索引器不能使用static来进行声明,属性 ...
- centos6升级openssh至7.9
1.为了防止升级失败登陆不了,所以需要安装telnet mkdir /root/ssh_updateyum install -y telnet-serveryum install -y xinetd ...
- [剑指offer] 二叉搜索树的后序遍历序列 (由1个后续遍历的数组判断它是不是BST)
①题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. ②思路 1.后续遍历的数组里,最后一个元素是根. 2 ...
- Long, long ago
Tell me the tales that to me were so dear; 请你给我讲那亲切的故事; Long, long ago; long, long ago.; 多年以前,多年以前; ...
- Linux系统中文件行末尾出现^M的原因及解决办法
不同系统,有不同的换行符号: 在windows下的文本文件的每一行结尾,都有一个回车('\n')和换行('\r') 在linux下的文本文件的每一行结尾,只有一个回车('\n'); 在Mac下的文本文 ...
- Android状态栏兼容4.4.4与5.0,Android5.0状态栏由半透明设置为全透明
//判断android 版本然后设置Systembar颜色 public void initSystemBar() { Window window = getWindow(); //4.4版本及以上 ...
- Java大神带你领略queue的风采
作为数据结构中比较常见的类型,你足够了解队列(queue)吗?从今天开始,我将为你讲解关于队列(queue)的一切,包括概念.类型和具体使用方法,如果你对此足够感兴趣,赶快来加入我们,我将同你一起探索 ...