Bobo has a tree with n vertices numbered by 1,2,…,n and (n-1) edges. The i-th vertex has color c i, and the i-th edge connects vertices a i and b i.
Let C(x,y) denotes the set of colors in subtree rooted at vertex x deleting edge (x,y).
Bobo would like to know R_i which is the size of intersection of C(a i,b i) and C(bi,a i) for all 1≤i≤(n-1). (i.e. |C(a i,b i)∩C(b i,a i)|)

Input

The input contains at most 15 sets. For each set:
The first line contains an integer n (2≤n≤10 5).
The second line contains n integers c 1,c 2,…,c n (1≤c_i≤n).
The i-th of the last (n-1) lines contains 2 integers a i,b i (1≤a i,b i≤n).

OutputFor each set, (n-1) integers R 1,R 2,…,R n-1.Sample Input

4
1 2 2 1
1 2
2 3
3 4
5
1 1 2 1 2
1 3
2 3
3 5
4 5

Sample Output

1
2
1
1
1
2
1

Hint

题解:题意就是,给以一颗树n个节点,每个节点有一种颜色,然年后对于n-1条边,如果把一条边截断,让你求两颗子树有多少种相同的颜色,依次输入每一条边的答案。

启发式搜索,分别记录点和边的答案;如果点u和其子树某种颜色的数量已经等于总量了,那么对于该子树外的一部分,就没有该中颜色了,答案-1;如果小于总量,答案+1;

然后更新u节点该颜色的数量即可;

参考代码:

 #include<bits/stdc++.h>
using namespace std;
#define clr(a,val) memset(a,val,sizeof (a))
#define pb push_back
#define fi first
#define se second
typedef long long ll;
const int maxn=1e5+;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
struct Edge{
int to,index,nxt;
} edge[maxn<<];
int n,head[maxn<<],tot;
int col[maxn],sum[maxn],ans[maxn],res[maxn<<];//ans[u]表示u点及子节点的答案, res[edge]表示边的答案
map<int,int> cnt[maxn];//cnt[u][color] 表示u点子树color颜色有多少个节点 inline void Init()
{
clr(head,-);clr(sum,); tot=;
for(int i=;i<=n;++i) cnt[i].clear();
} inline void addedge(int u,int v,int id)
{
edge[tot].to=v;
edge[tot].index=id;
edge[tot].nxt=head[u];
head[u]=tot++;
} inline void dfs(int u,int fa,int id)
{
cnt[u][col[u]]=;
ans[u] = cnt[u][col[u]]<sum[col[u]]?:;
for(int e=head[u];~e;e=edge[e].nxt)
{
int v=edge[e].to;
if(v==fa) continue;
dfs(v,u,edge[e].index);
if(cnt[u].size()<cnt[v].size())
{
swap(cnt[u],cnt[v]);
swap(ans[u],ans[v]);
}
map<int,int>::iterator it;
for(it=cnt[v].begin();it!=cnt[v].end();it++)
{
if(!cnt[u][(*it).fi] && (*it).se<sum[(*it).fi]) ++ans[u];
else if(cnt[u][(*it).fi] && cnt[u][(*it).fi]+(*it).se==sum[(*it).fi]) --ans[u];
cnt[u][(*it).fi]+=(*it).se;//加上子树的数量
}
}
res[id]=ans[u];
} int main()
{
while(~scanf("%d",&n))
{
Init();
for(int i=;i<=n;++i) col[i]=read(),sum[col[i]]++;
for(int i=;i<n;++i)
{
int u=read(),v=read();
addedge(u,v,i);addedge(v,u,i);
}
dfs(,,);
for(int i=;i<n;++i) printf("%d\n",res[i]);
} return ;
}

CSUOJ1811 Tree Intersection (启发式合并)的更多相关文章

  1. csu oj 1811: Tree Intersection (启发式合并)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1811 给你一棵树,每个节点有一个颜色.问删除一条边形成两棵子树,两棵子树有多少种颜色是有 ...

  2. dsu on tree 树上启发式合并 学习笔记

    近几天跟着dreagonm大佬学习了\(dsu\ on\ tree\),来总结一下: \(dsu\ on\ tree\),也就是树上启发式合并,是用来处理一类离线的树上询问问题(比如子树内的颜色种数) ...

  3. dsu on tree[树上启发式合并学习笔记]

    dsu on tree 本质上是一个 启发式合并 复杂度 \(O(n\log n)\) 不支持修改 只能支持子树统计 不能支持链上统计- 先跑一遍树剖的dfs1 搞出来轻重儿子- 求每个节点的子树上有 ...

  4. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  5. AGC 014E.Blue and Red Tree(思路 启发式合并)

    题目链接 \(Description\) 给定两棵\(n\)个点的树,分别是由\(n-1\)条蓝边和\(n-1\)条红边组成的树.求\(n-1\)次操作后,能否把蓝树变成红树. 每次操作是,选择当前树 ...

  6. dsu on tree(树上启发式合并)

    简介 对于一颗静态树,O(nlogn)时间内处理子树的统计问题.是一种优雅的暴力. 算法思想 很显然,朴素做法下,对于每颗子树对其进行统计的时间复杂度是平方级别的.考虑对树进行一个重链剖分.虽然都基于 ...

  7. CSU 1811: Tree Intersection(线段树启发式合并||map启发式合并)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1811 题意:给出一棵树,每一个结点有一个颜色,然后依次删除树边,问每次删除树边之后,分开的两个 ...

  8. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)

    codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...

  9. 树上启发式合并(dsu on tree)学习笔记

    有丶难,学到自闭 参考的文章: zcysky:[学习笔记]dsu on tree Arpa:[Tutorial] Sack (dsu on tree) 先康一康模板题吧:CF 600E($Lomsat ...

随机推荐

  1. 201871010114-李岩松《面向对象程序设计(java)》第十二周学习总结

    项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://www.cnblogs.com/nwnu-daizh/p ...

  2. Java线程池中线程的状态简介

    首先明确一下线程在JVM中的各个状态(JavaCore文件中) 1.死锁,Deadlock(重点关注) 2.执行中,Runnable(重点关注) 3.等待资源,Waiting on condition ...

  3. 【R语言学习笔记】 Day1 CART 逻辑回归、分类树以及随机森林的应用及对比

    1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: ...

  4. C#索引器与数组的区别

    1.索引器的索引值类型不限定为整数 2.索引器允许重载 3.索引器不是一个变量 4.索引器以函数签名方式this标识,而属性采用名称来标识,名称可以任意 5.索引器不能使用static来进行声明,属性 ...

  5. centos6升级openssh至7.9

    1.为了防止升级失败登陆不了,所以需要安装telnet mkdir /root/ssh_updateyum install -y telnet-serveryum install -y xinetd ...

  6. [剑指offer] 二叉搜索树的后序遍历序列 (由1个后续遍历的数组判断它是不是BST)

    ①题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. ②思路 1.后续遍历的数组里,最后一个元素是根. 2 ...

  7. Long, long ago

    Tell me the tales that to me were so dear; 请你给我讲那亲切的故事; Long, long ago; long, long ago.; 多年以前,多年以前; ...

  8. Linux系统中文件行末尾出现^M的原因及解决办法

    不同系统,有不同的换行符号: 在windows下的文本文件的每一行结尾,都有一个回车('\n')和换行('\r') 在linux下的文本文件的每一行结尾,只有一个回车('\n'); 在Mac下的文本文 ...

  9. Android状态栏兼容4.4.4与5.0,Android5.0状态栏由半透明设置为全透明

    //判断android 版本然后设置Systembar颜色 public void initSystemBar() { Window window = getWindow(); //4.4版本及以上 ...

  10. Java大神带你领略queue的风采

    作为数据结构中比较常见的类型,你足够了解队列(queue)吗?从今天开始,我将为你讲解关于队列(queue)的一切,包括概念.类型和具体使用方法,如果你对此足够感兴趣,赶快来加入我们,我将同你一起探索 ...