zabbix获取一周内各个等级告警的次数
# encoding:UTF-8
import xlsxwriter
import datetime
import pymysql
import numpy as np
import pandas __author__ = 'sanjing'
__data__ = '2019/06/14' averagesql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Average%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc """ highsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: High%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" warningsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Warning%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" informationsql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Information%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" disastersql = """
select from_unixtime(clock,'%Y-%m-%d') as time,
count(DISTINCT eventid) as id
from alerts
WHERE mediatypeid = 5
AND message LIKE '%告警等级: Diasater%'
AND SUBJECT LIKE '%PROBLEM%'
AND clock BETWEEN UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY)) AND UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
group by time
order by time asc
""" #连接MySQL数据库
def get_count(sql):
conn=pymysql.connect("xx.xx.xx.xx", "readonly", "xxxx", "zabbix", charset='utf8')
cursor = conn.cursor()
cursor.execute(sql)
count = cursor.fetchall()
# 将rows转化为数组
rows = np.array(count)
conn.close()
return count def coloum(data, weekendtime):
#创建一个excel文件
workbook = xlsxwriter.Workbook(weekendtime +".xlsx")
#创建一个工作表,默认sheet1
worksheet = workbook.add_worksheet()
bold = workbook.add_format({'bold': 1})
#表头 title = ['告警级别', '星期一','星期二','星期三','星期四','星期五','星期六','星期日']
#列名
buname = ['information', 'warning','average', 'high', 'disaster']
# 定义数据formatter格式对象,设置边框加粗1像素
formatter = workbook.add_format()
formatter.set_border(1)
#定义格式:# 定义标题栏格式对象:边框加粗1像素,背景色为灰色,单元格内容居中、加粗
title_formatter = workbook.add_format()
title_formatter.set_border(1)
title_formatter.set_bg_color('#cccccc')
title_formatter.set_align('center')
title_formatter.set_bold()
chart_col = workbook.add_chart({'type': 'column'})
def chart_series(row):
chart_col.add_series(
{
'categories': '=Sheet1!$B$1:$H$1',
'values': '=Sheet1!$B${}:$H${}'.format(row, row),
'line': {'color': 'black'},
# 'name': '=Sheet1!$A${}'.format(row)
'name': '=Sheet1!$A$' + row
}
)
# 下面分别以行和列的方式将标题栏、业务名称、流量数据写入单元格,并引用不同的格式对象
worksheet.write_row('A1',title,title_formatter)
worksheet.write_column('A2',buname,formatter)
for i in range (2,7):
worksheet.write_row('B{}'.format(i),data[i-2],formatter)
print (i)
chart_series(str(i)) # 设置图表的title 和 x,y轴信息
chart_col.set_title({'name': '告警统计/周'})
chart_col.set_x_axis({'name': '告警级别'})
chart_col.set_y_axis({'name': '告警次数'})
# 设置图表的风格
# chart_col.set_style(37) # 把图表插入到worksheet以及偏移
worksheet.insert_chart('A10', chart_col, {'x_offset': 25, 'y_offset': 10})
workbook.close()
#判断二维元组是否为空,长度是否满足要求,不满足则补0.
#输入为一个字典,判断是否为空,空则添加数据
def covertdata(jsondata,weektime): listkey = list(jsondata.keys())
for i in weektime:
j = i.strftime("%Y-%m-%d")
if listkey:
if j not in listkey:
jsondata[j] = ""
else:
jsondata[j] = ""
# print (jsondata)
#按照时间对字典进行排序
sort = sorted(jsondata.items(), key=lambda d: d[0])
#将第二列取出来并转为列表
array = np.array(sort)
array2 = array[:, 1]
list2 = array2.tolist()
list3 = list(map(lambda x: float(x), list2))
return list3
# print (list2) if __name__ == '__main__':
yesterday = (datetime.date.today() + datetime.timedelta(days=-1)).strftime("%Y-%m-%d")
weeklist = pandas.date_range(end=yesterday, periods=7)
informationdata = get_count(informationsql)
informationlist = covertdata(dict(informationdata),weeklist)
warningdata = get_count(warningsql)
warninglist = covertdata(dict(warningdata),weeklist)
averagedata = get_count(averagesql)
averagelist = covertdata(dict(averagedata),weeklist)
highdata = get_count(highsql)
highlist = covertdata(dict(highdata),weeklist)
disasterdata = get_count(disastersql)
disasterlist = covertdata(dict(disasterdata),weeklist)
# print (informationlist)
# print (warninglist)
# print (averagelist)
# print (highlist)
# print (disasterlist)
data1 = [informationlist, warninglist, averagelist, highlist, disasterlist]
coloum(data1,yesterday)
结果如图:
zabbix获取一周内各个等级告警的次数的更多相关文章
- iOS:获取一周7天的日期(年-月-日-星期)
一.介绍 在开发中,日期的使用绝对是离不了的,跟业务的关联性太强了,例如课程表.有的时候我们不需要课程表,但是需要获取一周7天的日期,这一周内的日期,我觉得有两种理解: 1.获取当天开始的一周日期,当 ...
- Servlet 利用Cookie实现一周内不重复登录
import java.io.IOException;import java.io.PrintWriter; import javax.servlet.ServletException;import ...
- [Java] 获取本月周次和日期时间段信息
package com.wdcloud.monitoring.common; import java.text.SimpleDateFormat; import java.util.ArrayList ...
- Android JAVA如何判断两天在同一周内
/** * <pre> * 判断date和当前日期是否在同一周内 * 注: * Calendar类提供了一个获取日期在所属年份中是第几周的方法,对于上一年末的某一天 * 和新年初的某一天在 ...
- JavaWeb 08_JSP+Dao+Bean+Servlet 实现登录注册(连接数据库,验证码登录,两周内免登陆等功能)
一.数据库db_01 表usert 字段username,password 二. 目录 三. 配置信息 四. 代码 index.jsp <script type="text/j ...
- Servlet课程0426(十一)Servlet Cookie实现两周内不用重复登录
Welcome.java //登录界面 package com.tsinghua; import javax.servlet.http.*; import java.io.*; import java ...
- js 获取每月有几周,根据年月周获取该周从周一到周日的日期等方法
本文基于react-native 本人在用react-native写一个关于课程表的APP时需要课程表按照日期周期显示,网上查了许多方法,都没有达到自己想要的效果,根据一些方法的参考,再根据自己思维写 ...
- PHP获取一周的日期
/** * 获取一周日期 * @param $time 时间戳 * @param $format 转换格式 */ function get_week($time, $format = "Y- ...
- oracle 根据一个时间段获取这个时间段内所有月份、天数、日期
注:本文来源于< oracle 根据一个时间段获取这个时间段内所有月份.天数.日期 > 获取月份列表: SELECT TO_CHAR(ADD_MONTHS(TO_DATE('2014-10 ...
随机推荐
- STM32F4 阿波罗 库函数与C语言知识
先聊一聊: 之前使用32都是用的库函数,但是没有理解为什么那么操作,有很多的文件我也不知道要看哪一个,感觉云里雾里,没有学清楚一件东西的感觉不太好,于是就在前几天一直跟着比较详细的视频学习.开始老师讲 ...
- cenos基本信息和ssh
一.查看cenos相关信息 1.查看cpu more /proc/cpuinfo grep "model name" grep "model name ...
- dubbo 发布 RPC 服务
Dubbo 发布 RPC 服务 建立服务提供者项目 pom.xml <?xml version="1.0" encoding="UTF-8"?> & ...
- BZOJ 2049洞穴探测
辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如两个洞穴可 ...
- Bless You Autocorrect!
题目链接: https://odzkskevi.qnssl.com/0c87453efec2747f8e8a573525fd42f9?v=1533651456 题解: 这是一道Trie+BFS的题目: ...
- art-template与swiper发生冲突导致swiper的一些样式不起作用
我们在实际中的前后端分离开发中,在进行渲染后端返回来的数据时我们有时会用到模板来进行渲染数据,而在渲染数据中我们可能用到一些组件来进行一些样式显示.而在页面中数据显示了导致组件的一些样式没有显示,一些 ...
- 大数据学习笔记——Spark完全分布式完整部署教程
Spark完全分布式完整部署教程 继Mapreduce之后,作为新一代并且是主流的计算引擎,学好Spark是非常重要的,这一篇博客会专门介绍如何部署一个分布式的Spark计算框架,在之后的博客中,更会 ...
- 大数据学习笔记——Linux完整部署篇(实操部分)
Linux环境搭建完整操作流程(包含mysql的安装步骤) 从现在开始,就正式进入到大数据学习的前置工作了,即Linux的学习以及安装,作为运行大数据框架的基础环境,Linux操作系统的重要性自然不言 ...
- python基础入门 字典
字典 字典---->dict 字典是无序的,可变的 关联性强 键值对 键:使用不可变的数据类型(可哈希),键是唯一的 值:可以任意 定义一个字典 dic = {}#定义字典 字典的增删改查 ...
- springcloud-微服务架构基础
一 前言 学习微服务要从基础的架构学起,首先你要有个微服务的概念才能学习对吧!!如果你都不知道啥是微服务,就一头扎进去学习,你自己也觉得自己也学不会对吧.本篇文章主要让大家快速了解基础的架构分格,以便 ...