NOIP 2011 铺地毯
洛谷 P1003 铺地毯
JDOJ 1744: [NOIP2011]铺地毯 D1 T1
Description
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
【数据范围】
对于 30%的数据,有n≤2;
对于 50%的数据,0≤a, b, g, k≤100;
对于 100%的数据,有0≤n≤10,000,0≤a, b, g, k≤100,000。
Input
输入共 n+2 行。
第一行,一个整数 n,表示总共有n 张地毯。
接下来的 n 行中,第i+1 行表示编号i 的地毯的信息,包含四个正整数a,b,g,k,每
两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x
轴和y 轴方向的长度。
第 n+2 行包含两个正整数x 和y,表示所求的地面的点的坐标(x,y)
Output
输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
Sample Input
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2 sample input2: 3 1 0 2 3 0 2 3 3 2 1 3 3 4 5
Sample Output
3 sample output2: -1
HINT
【输入输出样例2说明】
如上图,1 号地毯用实线表示,2 号地毯用虚线表示,3 号用双实线表示,点(4,5)
Source
题解:
逆向思维的一个应用。有一种离线的味道。
为什么说是逆向思维呢?
一般来讲,可能大家会这么想大佬请忽略这句话:正向枚举,一个个打标记,最后直接\(O(1)\)查询所求坐标点的编号就可以。
但是这样的时空复杂度都过不去...空间更明显一些,开不下数组。而我们这道题又不能用离散化。所以我们考虑逆向解决这个问题:我们把所有的地毯存在结构体中,维护它左下及右上两个点的坐标。如果一个点横坐标大于左下点的横坐标,且小于右上点的横坐标(纵坐标同理),那么就可以判定在这个地毯上。那么我们先把所有地毯都铺上去,然后逆向枚举每一个地毯,什么时候所求点符合要求了,那么当前的地毯就是答案,如果所有的地毯都遍历过了还是没找到,就是\(-1\)的情况。
代码:
#include<cstdio>
using namespace std;
const int maxn=1e4+10;
int n;
struct node
{
int x,y,a,b;
}c[maxn];
int qx,qy;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int a,b,g,k;
scanf("%d%d%d%d",&a,&b,&g,&k);
c[i].x=a;c[i].y=b;
c[i].a=a+g;c[i].b=b+k;
}
scanf("%d%d",&qx,&qy);
for(int i=n;i>=0;i--)
{
if(!i)
{
printf("-1");
return 0;
}
if(qx>=c[i].x && qx<=c[i].a && qy>=c[i].y && qy<=c[i].b)
{
printf("%d",i);
return 0;
}
}
}
NOIP 2011 铺地毯的更多相关文章
- P1003 铺地毯(noip 2011)
洛谷——P1003 铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯 ...
- NOIP 2011 Day 1
NOIP 2011 Day 1 tags: NOIP 搜索 categories: 信息学竞赛 总结 铺地毯 选择客栈 Mayan游戏 铺地毯 Solution 因为只会询问一个点被谁覆盖, 而且后面 ...
- NOIP 2011 Day 1 部分题解 (Prob#1 and Prob#2)
Problem 1: 铺地毯 乍一看吓cry,地毯覆盖...好像是2-dims 线段树,刚开头就这么难,再一看,只要求求出一个点,果断水题,模拟即可.(注意从标号大的往小的枚举,只要有一块地毯符合要求 ...
- NOIP201105铺地毯
NOIP201105铺地毯 [问题描述]为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有n 张地毯,编号从1 到n.现在将这些地毯按照 ...
- NOIP2011 铺地毯
1铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的 ...
- Vjios P1736 铺地毯【暴力,思维】
铺地毯 描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有n张地毯,编号从1到n.现在将这些地毯按照编号从小到大的顺序平行于坐标轴 ...
- LG. 1003 铺地毯
LG. 1003 铺地毯 题意分析 给出平面中地毯的左上角坐标和长宽,然后给出一点(x,y).求此点最上面是哪个地毯的编号,若没被覆盖则输出-1. 将所有地毯的信息存在一个结构体中,由于后埔地毯在上面 ...
- noip 2011
铺地毯 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺 ...
- NOIP2011 D1T1 铺地毯
P1692 铺地毯 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2011 day1 第一题 描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩 ...
随机推荐
- 6. java 方法
一.方法定义格式 修饰符 返回值类型 方法名称(参数类型 参数名称, ...){ 方法体; return 返回值; } 1. 修饰符:现阶段固定写法,public static 2. 参数如果有多个, ...
- 7.SourceTree 的使用
SourceTree 是 Windows 和Mac OS X 下免费的 Git 和 Hg 客户端管理工具,同时也是Mn版本控制系统工具.支持创建.克隆.提交.push.pull 和合并等操作. 下载路 ...
- JAVA中int转String类型有三种方法
String.valueOf(i) Integer.toString(i) i+"" i+""也就是一个int型的常量.+上个空的字符串,这里牵涉到了strin ...
- vuex 的使用 mapState, mapGetters, mapMutations, mapActions
state => 基本数据getters => 从基本数据派生的数据mutations => 提交更改数据的方法,同步!actions => 像一个装饰器,包裹mutation ...
- Jmeter 压测使用以及参数介绍
. 下载地址 https://jmeter.apache.org/download_jmeter.cgi Binaries¶ 下的apache-jmeter-5.2.1.zipsha512pgp . ...
- JavaScript判断对象和数组
在调用后端接口时,由于后端接口的不规范统一,接口最外层在没有数据时返回的是空数组(其实更想要的是空json对象,接口返回的data数据应该统一返回json对象,便于扩展),而在有数据时返回的是json ...
- Android高可用移动网络连接---(转载自http://wingjay.com/2019/01/16/mobile-network-connection/)
读者好,前面我们在 <Android 架构之网络连接与加速> 和<Android 架构之长连接技术>两篇文章中,讲解了 Http 短连接.TCP 长连接.连接复用与速度优化.数 ...
- Percona XtraDB Cluster简易入门 - 安装篇
说明 Percona XtraDB Cluster(简称PXC),是由percona公司推出的mysql集群解决方案.特点是每个节点都能进行读写,且都保存全量的数据.也就是说在任何一个节点进行写入操作 ...
- 简析 Golang IO 包
简析 Golang IO 包 io 包提供了 I/O 原语(primitives)的基本接口.io 包中定义了四个最基本接口 Reader.Writer.Closer.Seeker 用于表示二进制流的 ...
- python爬取昵称并保存为csv
代码: import sys import io import re sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030') ...