spark 应用场景2-身高统计
原文引自:http://blog.csdn.net/fengzhimohan/article/details/78564610
a. 案例描述
本案例假设我们需要对某个省的人口 (10万) 性别还有身高进行统计,需要计算出男女人数,男性中的最高和最低身高,以及女性中的最高和最低身高。本案例中用到的源文件有以下格式, 三列分别是 ID,性别,身高 (cm),格式如下:
b.人口数据的生成
利用Java语言随机生成一组人口数据,包括序列ID,性别M/F,身高cm,代码如下:
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random; /**
* Created by Administrator on 2017/11/13.
*/
public class PeopleInfoFileGenerator {
public static void main(String[] args){
File file = new File("F:\\PeopleInfo.txt"); try {
Random random = new Random();//生成随机数
FileWriter fileWriter = new FileWriter(file);//新建一个文件
for (int i=1;i<=1000000;i++){ //生成10万个数字
int height = random.nextInt(220);
if (height < 50) {
height = height + 50;
}
String gender = getRandomGender(); //性别方法
if (height < 100 && gender == "M") {
height = height + 100;
}
if (height < 100 && gender == "F") {
height = height + 40;
}
fileWriter.write( i + " " + getRandomGender() + " " + height); //文件格式:ID 性别 身高
fileWriter.write(System.getProperty("line.separator"));
}
fileWriter.flush();
fileWriter.close();
System.out.println("People Information File generated successfully.");
}catch (IOException e){
e.printStackTrace();
}
} public static String getRandomGender(){ //构建一个随机生成性别方法
Random random = new Random();
int randomNum = random.nextInt(2) + 1;
if( randomNum % 2 == 0){
return "M";
}else{
return "F";
}
}
}
c. 实例过程分析
对于这个案例,我们要分别统计男女的信息,那么很自然的想到首先需要对于男女信息从源文件的对应的 RDD 中进行分离,这样会产生两个新的 RDD,分别包含男女信息;其次是分别对男女信息对应的 RDD 的数据进行进一步映射,使其只包含身高数据,这样我们又得到两个 RDD,分别对应男性身高和女性身高;最后需要对这两个 RDD 进行排序,进而得到最高和最低的男性或女性身高。
第一步,先分离男女信息,使用 filter 算子过滤条件包含”M” 的行是男性,包含”F”的行是女性;第二步我们需要使用 map 算子把男女各自的身高数据从 RDD 中分离出来;第三步我们需要使用 sortBy 算子对男女身高数据进行排序。
特别注意:RDD 转化的过程中需要把身高数据转换成整数,否则 sortBy 算子会把它视为字符串,那么排序结果就会受到影响,例如 身高数据如果是:123,110,84,72,100,那么升序排序结果将会是 100,110,123,72,84,显然这是不对的。
d.求出身高统计代码实现
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import java.util.Arrays;
/**
* Created by Administrator on 2017/11/17.
*/
public class PeopleInfoCalculator {
public static void main(String[] args){
SparkConf sparkConf = new SparkConf().setAppName("PeopleInfoCalculator").setMaster("local[3]");
JavaSparkContext sc = new JavaSparkContext(sparkConf);
JavaRDD<String> dataFile = sc.textFile("F:\\PeopleInfo.txt"); JavaRDD<String> maleFilterData = dataFile.filter(new Function<String, Boolean>() {//过滤出性别为M的数据
@Override
public Boolean call(String s) throws Exception {
return s.contains("M");
}
});
JavaRDD<String> femaleFilterData = dataFile.filter(new Function<String, Boolean>() {//过滤出性别为F的数据
@Override
public Boolean call(String s) throws Exception {
return s.contains("F");
}
});
JavaRDD<String> maleHeightData = maleFilterData.flatMap(new FlatMapFunction<String, String>() {//得到性别为M的身高数据
@Override
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split(" ")[2]);
}
});
JavaRDD<String> femaleHeightData = femaleFilterData.flatMap(new FlatMapFunction<String, String>() {//得到性别为F的身高数据
@Override
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(s.split(" ")[2]);
}
});
JavaRDD<Integer> maleHeightDataInt = maleHeightData.map(new Function<String, Integer>() {//将字符串格式转化为整型格式
@Override
public Integer call(String s) throws Exception {
return Integer.parseInt(String.valueOf(s));
}
});
JavaRDD<Integer> femaleHeightDataInt = femaleHeightData.map(new Function<String, Integer>() {//将字符串格式转化为整型格式
@Override
public Integer call(String s) throws Exception {
return Integer.parseInt(String.valueOf(s));
}
});
//sortBy(<T>,ascending,numPartitions) 解释:
//第一个参数是一个函数,该函数的也有一个带T泛型的参数,返回类型和RDD中元素的类型是一致的;
//第二个参数是ascending,这参数决定排序后RDD中的元素是升序还是降序,默认是true,也就是升序;
//第三个参数是numPartitions,该参数决定排序后的RDD的分区个数,默认排序后的分区个数和排序之前的个数相等,即为this.partitions.size。
JavaRDD<Integer> maleHeightLowSort = maleHeightDataInt.sortBy(new Function<Integer,Integer>(){// true表示默认排序,为升序排序,从低到高排
public Integer call(Integer s) throws Exception {
return s;
}
},true,3);
JavaRDD<Integer> femaleHeightLowSort = femaleHeightDataInt.sortBy(new Function<Integer,Integer>(){// true表示默认排序,为升序排序,从低到高排
public Integer call(Integer s) throws Exception {
return s;
}
},true,3);
JavaRDD<Integer> maleHeightHightSort = maleHeightDataInt.sortBy(new Function<Integer,Integer>(){// false表示为降序排序,从高到低
public Integer call(Integer s) throws Exception {
return s;
}
},false,3);
JavaRDD<Integer> femaleHeightHightSort = femaleHeightDataInt.sortBy(new Function<Integer,Integer>(){// true表示默认排序,为降序排序,从低到高排
public Integer call(Integer s) throws Exception {
return s;
}
},false,3);
Integer lowestMale = maleHeightLowSort.first(); //求出升序的第一个数,即最小值
Integer lowestFemale = femaleHeightLowSort.first();//求出升序的第一个数,即最小值
Integer highestMale = maleHeightHightSort.first();//求出降序的第一个数,即最大值
Integer highestFemale = femaleHeightHightSort.first();//求出降序的第一个数,即最大值 System.out.println("Number of Female Peole:" + femaleHeightData.count());//求出女性的总个数
System.out.println("Number of Male Peole:" + maleHeightData.count());//求出男性的总个数
System.out.println("Lowest Male:" + lowestMale);//求出男性最矮身高
System.out.println("Lowest Female:" + lowestFemale);//求出女性最矮身高
System.out.println("Highest Male:" + highestMale);//求出男性最高身高
System.out.println("Highest Female:" + highestFemale);//求出女性最高身高 }
}
e.运行结果:
spark 应用场景2-身高统计的更多相关文章
- Spark学习笔记1——第一个Spark程序:单词数统计
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...
- Spark案例练习-UV的统计
关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)云盘目录说明:tools目录是安装包res 目录是每一个课件对应的代码和资源等doc 目录是一 ...
- spark 应用场景1-求年龄平均值
原文引自:http://blog.csdn.net/fengzhimohan/article/details/78535143 该案例中,我们将假设我们需要统计一个 10 万人口的所有人的平均年龄,当 ...
- spark SQL学习(案例-统计每日销售)
需求:统计每日销售额 package wujiadong_sparkSQL import org.apache.spark.sql.types._ import org.apache.spark.sq ...
- spark SQL学习(案例-统计每日uv)
需求:统计每日uv package wujiadong_sparkSQL import org.apache.spark.sql.{Row, SQLContext} import org.apache ...
- Spark Streaming的样本demo统计
废话不多说,直接上代码 package com.demo; import java.util.List; import java.util.regex.Pattern; import org.apac ...
- Spark应用场景以及与hadoop的比较
一.大数据的四大特征: a.海量的数据规模(volume) b.快速的数据流转和动态的数据体系(velocity) c.多样的数据类型(variety) d.巨大的数据价值(value) 二.Spar ...
- Spark案例练习-PV的统计
关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新) 云盘目录说明: tools目录是安装包res 目录是每一个课件对应的代码和资源等doc ...
- Spark词频前十的统计练习
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815390070254600712/ 承接上一个文档<Spark本地环境实现wordCount单词计数> ...
随机推荐
- 关于rem单位的使用
rem在移动端应用可参考淘宝的页面http://m.taobao.com (html的font-size通过动态计算获取) 页面基准320px(20px),html font-size值的计算: 注: ...
- cdh maven仓库地址
常用的maven仓库地址: 中央库:http://repo.maven.apache.org/maven2/ cdh库:https://repository.cloudera.com/artifact ...
- 堡垒机介绍及实现 (使用python django实现)(一)
堡垒机介绍及实现 (使用python django实现)(一) 堡垒机的功能 我们在使用服务器的时候,通常的方式是 ssh user@ip 然后输入password 多人同时使用,就需要多个账号.这时 ...
- Linux CPU负载状态:%us/%sy/%ni/%id/%wa/%hi/%si/%st含义
原文 Linux CPU负载状态:%us/%sy/%ni/%id/%wa/%hi/%si/%st含义 缙哥哥发现用了雅黑的探针,在 Linux 的 CPU 状态信息中发现,有“%us.%sy.%ni. ...
- moment 获取当前月日历
获取当前月日历 <template> <div id="calendar"> <div class="top">{{date ...
- 8_InlineHook
1 shellcode低2Gb警告.应使用高2GB 稳定 : 在内核挂钩子: 由于每个进程的低2gb 的数据是不同的:所以 在内核挂钩子 因该把 代码 放在 高 2gb. 方法1(申请): 比如 使用 ...
- 深度探索C++对象模型之第一章:关于对象之关键词所引起的差异
————如果不是为了努力维护与C之间的兼容性,C++远比现在简单的多. 如果一个程序员渴望学习C++,但是他却发现书中没有熟悉的struct,一定会苦恼,将这个主题包含到C++里,可以提供语言转移时的 ...
- IDEA快捷键(收集自网络后整理)
快捷键 说明 CTRL+B 快速打开光标处的类或方法 CTRL+C 拷贝 CTRL+D 复制当前行到下一行 CTRL+E 最近打开的文件 CTRL+F 当前文件查找特定内容 CTRL+G 定位行 CT ...
- redis笔记_源码_字典dict
参考:https://redissrc.readthedocs.io/en/latest/datastruct/dict.html Expand: 条件: 新的table 大小: Rehash: 条件 ...
- JVM中堆栈
1.JVM是基于堆栈的虚拟机.JVM为每个新创建的线程都分配一个堆栈.也就是说,对于一个Java程序来说,它的运行就是通过对堆栈的操作来完成的.堆栈以帧为单位保存线程的状态.JVM对堆栈只进行两种操作 ...