【深度学习】CNN 中 1x1 卷积核的作用
【深度学习】CNN 中 1x1 卷积核的作用
最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前接触过的教材的例子中最小的卷积核是 3x3 ,那么,1x1 的卷积核有什么意义呢?
最初应用 1x1 卷积核的神经网络是 Network In Network,然后 GoogLeNet 和 VGG 也不约而同的更正了。
他们在论文中解释,大概有下面 2 个意义。
1、增加网络的深度
这个就比较好理解了,1x1 的卷积核虽小,但也是卷积核,加 1 层卷积,网络深度自然会增加。
其实问题往下挖掘,应该是增加网络深度有什么好处?为什么非要用 1x1 来增加深度呢?其它的不可以吗?
其实,这涉及到感受野的问题,我们知道卷积核越大,它生成的 featuremap 上单个节点的感受野就越大,随着网络深度的增加,越靠后的 featuremap 上的节点感受野也越大。因此特征也越来越抽象。
但有的时候,我们想在不增加感受野的情况下,让网络加深,为的就是引入更多的非线性。
而 1x1 卷积核,恰巧可以办到。
我们知道,卷积后生成图片的尺寸受卷积核的大小和跨度影响,但如果卷积核是 1x1 ,跨度也是 1,那么生成后的图像大小就并没有变化。
但通常一个卷积过程包括一个激活函数,比如 Sigmoid 和 Relu。
所以,在输入不发生尺寸的变化下,却引入了更多的非线性,这将增强神经网络的表达能力。
2、升维或者是降维
大家可以看下面这张图:
我们可以直观地感受到卷积过程中:卷积后的的 featuremap 通道数是与卷积核的个数相同的
所以,如果输入图片通道是 3,卷积核的数量是 6 ,那么生成的 feature map 通道就是 6,这就是升维,如果卷积核的数量是 1,那么生成的 feature map 只有 1 个通道,这就是降维度。
值得注意的是,所有尺寸的卷积核都可以达到这样的目的。
那为什么要用 1x1 呢
原因就是数据量的大小,我们知道在训练的时候,卷积核里面的值就是要训练的权重,3x3 的尺寸是 1x1 所需要内存的 9 倍,其它的类似。所以,有时根据实际情况只想单纯的去提升或者降低 feature map 的通道,1x1 无疑是一个值得考虑的选项。
【深度学习】CNN 中 1x1 卷积核的作用的更多相关文章
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- 深度学习-CNN+RNN笔记
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...
- 寻找下一款Prisma APP:深度学习在图像处理中的应用探讨(阅读小结)
原文链接:https://yq.aliyun.com/articles/61941?spm=5176.100239.bloglist.64.UPL8ec 某会议中的一篇演讲,主要讲述深度学习在图像领域 ...
- 深度学习 CNN CUDA 版本2
作者:zhxfl 邮箱:zhxfl##mail.ustc.edu.cn 主页:http://www.cnblogs.com/zhxfl/p/4155236.html 第1个版本blog在这里:http ...
- 如何可视化深度学习网络中Attention层
前言 在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的.在小论文中主要研究了关于词性POS对输入序列的注意力机制.同时对比实验 ...
- CNN中1x1 卷积的处理过程及作用
参看:https://blog.csdn.net/ybdesire/article/details/80314925
- 深度学习——CNN
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 思想 filter尺寸 ...
- 小刘的深度学习---CNN
前言: 前段时间我在树莓派上通过KNN,SVM等机器学习的算法实现了门派识别的项目,所用到的数据集是经典的MNIST.可能是因为手写数字与印刷体存在一些区别,识别率并是很不高.基于这样的情况,我打算在 ...
- 深度学习网络中numpy多维数组的说明
目前在计算机视觉中应用的数组维度最多有四维,可以表示为 (Batch_size, Row, Column, Channel) 以下将要从二维数组到四维数组进行代码的简单说明: Tips: 1) 在nu ...
随机推荐
- ubuntu切换到root用户
我们都知道使用su root命令,去切换到root权限,此时会提示输入密码,可是怎么也输不对,提示"Authentication failure", 解决办法如下 su root ...
- python 模块间的引入
转载来自: https://www.cnblogs.com/whitemouseV2-0/p/9925344.html https://www.cnblogs.com/whitemouseV2-0/p ...
- 06.Mybatis关联查询
1.一对一关联查询 需求:查询出每条orders记录和其关联的user信息 在orders实体类中添加属性与set.get方法 /** * 测试1对1关联查询 */ private User user ...
- 学习修复Laravel The only supported ciphers are AES-128-CBC and AES-256-CBC
The only supported ciphers are AES-128-CBC and AES-256-CBC 在项目中,删除了 .env的APP_KEY的值,再运行 php artisan k ...
- GCRoots 对象
GC Roots 虚拟机栈(栈帧中的本地变量表)中引用的对象 方法区中的类静态属性引用的对象 方法区中的常量引用的对象 原生方法栈(Native Method Stack)中 JNI 中引用的对象 可 ...
- ibator配置文件说明文档
1. <classPathEntry> 属性名 说明 示例 location 数据库驱动文件路径 lib/mysql-connector-java-5.1.6-bin.jar 2. ...
- BZOJ 1040 (ZJOI 2008) 骑士
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
- Spring中的事件监听实现
在spring中我们可以自定义事件,并且可以使用ApplicationContext类型对象(就是spring容器container)来发布这个事件 事件发布之后,所有的ApplicaitonList ...
- spring boot发简单文本邮件
首先要去邮箱打开POP3/SMTP权限: 然后会提供个授权码,用来发送邮件.忘记了,可以点生成授权码再次生成. 1.引入spring boot自带的mail依赖,这里版本用的:<spring-b ...
- amazeUI表单提交验证--input框required
效果: html: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...