P1757 通天之分组背包

题目背景

直达通天路·小A历险记第二篇

题目描述

自01背包问世之后,小A对此深感兴趣。一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。

输入输出格式

输入格式:

两个数m,n,表示一共有n件物品,总重量为m

接下来n行,每行3个数ai,bi,ci,表示物品的重量,利用价值,所属组数

输出格式:

一个数,最大的利用价值

输入输出样例

输入样例#1:

input: 45 4
10 10 1
10 5 1
5 20 2
50 400 2
输出样例#1:

output:30

说明

1<=m<=1000 1<=n<=1000 组数t<=100

一直以为背包问题最后出结果要扫一遍f,今天才发现直接输出f[容积]就够了。。

分组背包其实很简单,每一个组看成一个物品就是一个01背包。

然后在每个组里选加进去之后得到的最大值就可以。

我用了vector存每个组,其实完全可以用二维数组,[i][0]来存个数。

最好别用vector(尽管我用了),容易被卡

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std; #define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b)) inline int read()
{
int x = 0;char ch = getchar();char c = ch;
while(ch > '9' || ch < '0')c = ch,ch = getchar();
while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0',ch = getchar();
if(c == '-')return -1 * x;
return x;
} const int INF = 99999999999; int n,m,groupn;
vector<int> group[100 + 10];
int f[1000 + 10];
int w[1000 + 10];
int v[1000 + 10];
int minn[100 + 10]; int main()
{
m = read();n = read();
for(int i = 1;i <= n;i ++)
{
int temp;
v[i] = read();w[i] = read();temp = read();
group[temp].push_back(i);
minn[temp] = min(minn[temp], v[i]);
groupn = max(groupn, temp);
}
for(int i = 1;i <= groupn;i ++)
{
int size = group[i].size() - 1;
for(int j = m;j >= minn[i];j --)
{
for(int k = 0;k <= size;k ++)
{
if(j >= v[group[i][k]])
f[j] = max(f[j],f[j - v[group[i][k]]] + w[group[i][k]]);
}
}
}
printf("%d", f[m]);
return 0;
}

洛谷P1757 通天之分组背包 [2017年4月计划 动态规划06]的更多相关文章

  1. 洛谷——P1757 通天之分组背包

    P1757 通天之分组背包 题目背景 直达通天路·小A历险记第二篇 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品 ...

  2. 洛谷 P1757 通天之分组背包

    P1757 通天之分组背包 题目背景 直达通天路·小A历险记第二篇 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品 ...

  3. 洛谷 P1757 通天之分组背包 【分组背包】

    题目链接:https://www.luogu.org/problemnew/show/P1757#sub 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包 ...

  4. 洛谷P1757 通天之分组背包

    题目背景 直达通天路·小A历险记第二篇 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品相互冲突,现在,他想知道最大 ...

  5. 洛谷P2723 丑数 Humble Numbers [2017年 6月计划 数论07]

    P2723 丑数 Humble Numbers 题目背景 对于一给定的素数集合 S = {p1, p2, ..., pK},考虑一个正整数集合,该集合中任一元素的质因数全部属于S.这个正整数集合包括, ...

  6. 洛谷P2826 [USACO08NOV]光开关Light Switching [2017年6月计划 线段树02]

    P2826 [USACO08NOV]光开关Light Switching 题目描述 Farmer John tries to keep the cows sharp by letting them p ...

  7. 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...

  8. P1757 通天之分组背包

    P1757 通天之分组背包背包中的经典问题,我竟然不知道.分组背包就是每个物品有一个所属的小组,小组内的物品会冲突.就是把01背包中的两个for换一下位置01:for(i,1,kind) for(j, ...

  9. P1757 通天之分组背包 / hdu1712 ACboy needs your help (分组背包入门)

    P1757 通天之分组背包 hdu1712 ACboy needs your help hdu1712题意:A[i][j]表示用j天学习第i个课程能够得到A[i][j]的收益,求m天内获得的收益最大值 ...

随机推荐

  1. 杂项-DTO:DTO(数据传输对象)

    ylbtech-杂项-DTO:DTO(数据传输对象) 数据传输对象(DTO)(Data Transfer Object),是一种设计模式之间传输数据的软件应用系统.数据传输目标往往是数据访问对象从数据 ...

  2. css3中 百分比宽度减去固定宽度的写法

    div{ /*实现了宽度为父容器宽度减去固定的300像素*/ width:-webkit-calc(100% - 300px); width:-moz-calc(100% - 300px); widt ...

  3. Elasticsearch template学习

    Elasticsearch template Elasticsearch存在一个关键问题就是索引的设置及字段的属性指定,最常见的问题就是,某个字段我们并不希望ES对其进行分词,但如果使用自动模板创建索 ...

  4. 2016 CCPC网络选拔赛 部分题解

    HDU 5832 - A water problem 题意:有两颗星球,一年的长度分别为37天和173天.问第n天时它们是否为新年的第一天. 思路:显然  n 同时被37和173整除时,两种历法都在新 ...

  5. STL与泛型编程-学习2-GeekBand

    9, 容器 Deque 双向队列 和vector类似, 新增加: push_front 在头部插入一个元素 pop_front 在头部弹出一个元素 Deque和vector内存管理不同: 大块分配内存 ...

  6. hue mysql连接不上数据库排查

    由于CDH所有的组件都会进行agent检测,所以先到/var/log/cloudera-scm-agent(mysql所在节点进行日志排查),可以发现每次连接会产生一个log路径作为记录hue连接my ...

  7. cdh_hadoop下载地址

    http://archive.cloudera.com/cdh5/cdh/5/

  8. Spring Cloud Eureka 使用外网IP和端口号进行服务注册

    应用场景如下: 服务提供方(即要注册到服务中心的服务)的内网地址,外界无法访问(或者使用docker等做了应用端口等的配置),做了IP映射后,公网IP49.10.22.106映射到服务提供方的内网ip ...

  9. [vagrant]vagrant centos静态ip设置

    vagrant 中使用的是public_network,而工作网络中,由于桥接了很多路由器,导致ip段位和本机的ip段位不在同一个局域网中 ifconfig之后的结果 [root@localhost ...

  10. redis消息队列先进先出需要注意什么?

    通常使用一个list来实现队列操作,这样有一个小限制,所以的任务统一都是先进先出,如果想优先处理某个任务就不太好处理了,这就需要让队列有优先级的概念,我们就可以优先处理高级别的任务,实现方式有以下几种 ...