python常见函数积累
shape()
返回数组或者数据框有多少行或者多少列
import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#输出数组的行和列数
print x.shape #结果: (4, 3)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 3
因此可以用来遍历行或者列
#计算每列的均值
ex=np.array(np.mean(x[:,i]) for i in range(x.shape[1]))
reshpae()
reshape()是数组array中的方法,作用是将数据重新组织
a = np.array([[1,2,3,4],[5,6,7,8]]) #二维数组
print(a.shape[0]) #值为2,最外层矩阵有2个元素,2个元素还是矩阵。
print(a.shape[1]) #值为4,内层矩阵有4个元素。
b= np.array([1,2,3,4,5,6,7,8])
b.reshape(2,4)
print(b)
#array([[1,2,3,4],
[5,6,7,8]])
pd.Dataframe.columns
返回数据框的列名
pd.Dataframe.columns.values
返回数据框的的列值
[[]]
我之前想提取两列,哈哈,想半天,最后看了一个同学给的demo
直接pd.[["列名","列名"]]
还是见的太少了
_
就是常见的命名规则,
这里指代损失函数
# Create centroids with kmeans for 2 clusters
cluster_centers,_ = kmeans(fifa[scaled_features], 2)
unique()
去重函数,默认是行去重
[]
# Leave this list as is
number_cols = ['HP', 'Attack', 'Defense']
# Remove the feature without variance from this list
non_number_cols = ['Name', 'Type', 'Legendary']
# Create a new dataframe by subselecting the chosen features
df_selected = pokemon_df[number_cols + non_number_cols]
<script.py> output:
HP Attack Defense Name Type Legendary
0 45 49 49 Bulbasaur Grass False
1 60 62 63 Ivysaur Grass False
2 80 82 83 Venusaur Grass False
3 80 100 123 VenusaurMega Venusaur Grass False
4 39 52 43 Charmander Fire False
比如这个栗子,可以用来提取子数据框
format
print("{} rows in test set vs. {} in training set. {} Features.".format(X_test.shape[0], X_train.shape[0], X_test.shape[1]))
输出保留一位百分比小数的结果
print("{0:.1%} accuracy on test set.".format(acc))
isnull()
判断是否有缺失值
返回bool
.sum()
除了求和之外还有判断个数此时等同于count
pd.isnull.sum()
.dtypes
DataFrame.dtypes
返回DataFrame中的dtypes
这将返回一个Series,其中包含每列的数据类型。结果的索引是原始DataFrame的列。具有混合类型的列与objectdtype 一起存储
1.type() 返回参数的数据类型
2.dtype 返回数组中元素的数据类型
3.astype() 对数据类型进行转换
value_counts()
value_counts()是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中有多少重复值。
所以就是统计
In [3]: volunteer["category_desc"].value_counts()
Out[3]:
Strengthening Communities 307
Helping Neighbors in Need 119
Education 92
Health 52
Environment 32
Emergency Preparedness 15
Name: category_desc, dtype: int64
apply
我先放个栗子,后面继续补充这个函数,感觉做一些简单的处理很好用
# Create a list of the columns to average
run_columns = ["run1", "run2", "run3", "run4", "run5"]
# Use apply to create a mean column
running_times_5k["mean"] = running_times_5k.apply(lambda row: row[run_columns].mean(), axis=1)
# Take a look at the results
print(running_times_5k)
script.py> output:
name run1 run2 run3 run4 run5 mean
0 Sue 20.1 18.5 19.6 20.3 18.3 19.36
1 Mark 16.5 17.1 16.9 17.6 17.3 17.08
2 Sean 23.5 25.1 25.2 24.6 23.9 24.46
3 Erin 21.7 21.1 20.9 22.1 22.2 21.60
4 Jenny 25.8 27.1 26.1 26.7 26.9 26.52
5 Russell 30.9 29.6 31.4 30.4 29.9 30.44
python常见函数积累的更多相关文章
- python常见函数以及模块调用
1.常用函数区别 print: 在python3.0中print是函数,这意味着需要编写print(A )而不是print A str()和repr()的区别 >>>print st ...
- python爬虫积累(一)--------selenium+python+PhantomJS的使用(转)
阅读目录 一.Selenium介绍 二.爬虫为什么要用selenium? 三.PhantomJS介绍 四.PhantomJS安装 五.操作实战 六.在此推荐虫师博客的学习资料 selenium + p ...
- Python学习积累:使用help();打印多个变量;fileno()
1.使用篇: 1.1如何从help()退出: 直接回车即可! 2.技能篇: 2.1 如何一次性打印多个变量? 多个变量中间使用逗号隔开,且引用变量为%(变量1,变量2,变量3), 2.2fileno( ...
- python爬虫积累(一)--------selenium+python+PhantomJS的使用
最近按公司要求,爬取相关网站时,发现没有找到js包的地址,我就采用selenium来爬取信息,相关实战链接:python爬虫实战(一)--------中国作物种质信息网 一.Selenium介绍 Se ...
- python知识积累
1. 安装requirements.txt依赖: pip install -r requirements.txt 生成requirements.txt文件: pip freeze > requi ...
- Python 自学积累(二)
1. onfigParser 模块用于操作配置文件 注:Parser汉译为“解析”之意. 配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数( ...
- Python 自学积累(一)
1. 当"print os.path.dirname(__file__)"所在脚本是以完整路径被运行的, 那么将输出该脚本所在的完整路径,比如: python d:/pythonS ...
- python常见函数运用【一】
1.Python hasattr() 函数 描述hasattr() 函数用于判断对象是否包含对应的属性. 语法 hasattr 语法: hasattr(object, name)参数object -- ...
- Python 日常积累
包管理 >from ... import ... 的用法和直接import的区别 直接使用import时,如果需要使用到导入模块内的属性和方法,必须使用模块名.属性和模块名.方法的方式进行调用 ...
随机推荐
- 《 Java 编程思想》CH08 多态
在面向对象的程序设计语言中,多态是继数据抽象和继承之后的第三种基本特征. 多态通过分离做什么和怎么做,从另一个角度将接口和实现分离开来. "封装"通过合并特征和行为来创建新的数据类 ...
- Java开发最佳实践(一) ——《Java开发手册》之"编程规约"
Java开发手册版本更新说明 专有名词解释 一. 编程规约 (一) 命名风格 (二) 常量定义 (三) 代码格式 (四) OOP 规约 (五) 集合处理 (六) 并发处理 (七) 控制语句 (八) 注 ...
- 关于ELF文件和BIN文件
ELF文件执行过程 ELF文件有操作系统的加载器loader执行,比如linux,windows,对于3803处理器是grmon的load命令. 加载器会读取ELF文件program header,比 ...
- Sparc V8
Sparc V8指令 在sparc V8手册中p83(Table A-1 Mapping of Synthetic Instructions to SPARC Instructions)有合成指令sy ...
- ELK 记录 java log4j 类型日志
ELK 记载 java log4j 时,一个报错会生成很多行,阅读起来很不方便. 类似这样 解决这个问题的方法 1.使用多行合并 合并多行数据(Multiline) 有些时候,应用程序调试日志会包含 ...
- Linux 配置ip 子接口 多网卡绑定
linux系统配置ip地址,图形化界面略过,这里只介绍文本行.做以下设置注意是否有此权限 查看当前路由及网关信息: [root@localhost ~]# netstat -r Kernel IP r ...
- 蓝桥杯ALGO-1,区间k大数查询
#include<stdio.h> int devide(long a[], int low, int high) { long key = a[high]; while (low< ...
- 4.【Spring Cloud Alibaba】服务容错-sentinel
雪崩效应 常见容错方案 超时 限流 仓壁模式 断路器模式 断路器三态转换 使用Sentinel实现容错 什么是Sentinel https://github.com/alibaba/Sentinel ...
- Windows-server-2008-R2安装Oracle-11g-R2-dataguard
一.安装环境 1.服务器环境:Windows server 2008 R2 x64 Standard 两台 CPU:8核 内存:8G 硬盘空间:1060G 2.软件:oracle 11g R2 二.安 ...
- iis添加asp.net网站,访问提示:由于扩展配置问题而无法提供您请求的页面。如果该页面是脚本,请添加处理程序。如果应下载文件,请添加 MIME 映射
今天在iis服务器配置asp.net网站,遇到一个问题,记录一下: 问题:由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序.如果应下载文件,请添加 MIME 映射. Windo ...