shape()

返回数组或者数据框有多少行或者多少列

import numpy as np
x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#输出数组的行和列数
print x.shape #结果: (4, 3)
#只输出行数
print x.shape[0] #结果: 4
#只输出列数
print x.shape[1] #结果: 3

因此可以用来遍历行或者列

#计算每列的均值
ex=np.array(np.mean(x[:,i]) for i in range(x.shape[1]))

reshpae()

reshape()是数组array中的方法,作用是将数据重新组织

a = np.array([[1,2,3,4],[5,6,7,8]])  #二维数组
print(a.shape[0]) #值为2,最外层矩阵有2个元素,2个元素还是矩阵。
print(a.shape[1]) #值为4,内层矩阵有4个元素。
b= np.array([1,2,3,4,5,6,7,8])
b.reshape(2,4)
print(b)
#array([[1,2,3,4],
[5,6,7,8]])

pd.Dataframe.columns

返回数据框的列名

pd.Dataframe.columns.values

返回数据框的的列值

[[]]

我之前想提取两列,哈哈,想半天,最后看了一个同学给的demo

直接pd.[["列名","列名"]]

还是见的太少了

_

就是常见的命名规则,

这里指代损失函数
# Create centroids with kmeans for 2 clusters
cluster_centers,_ = kmeans(fifa[scaled_features], 2)

unique()

去重函数,默认是行去重

[]

# Leave this list as is
number_cols = ['HP', 'Attack', 'Defense'] # Remove the feature without variance from this list
non_number_cols = ['Name', 'Type', 'Legendary'] # Create a new dataframe by subselecting the chosen features
df_selected = pokemon_df[number_cols + non_number_cols] <script.py> output:
HP Attack Defense Name Type Legendary
0 45 49 49 Bulbasaur Grass False
1 60 62 63 Ivysaur Grass False
2 80 82 83 Venusaur Grass False
3 80 100 123 VenusaurMega Venusaur Grass False
4 39 52 43 Charmander Fire False

比如这个栗子,可以用来提取子数据框

format

print("{} rows in test set vs. {} in training set. {} Features.".format(X_test.shape[0], X_train.shape[0], X_test.shape[1]))

输出保留一位百分比小数的结果

print("{0:.1%} accuracy on test set.".format(acc))

isnull()

判断是否有缺失值

返回bool

.sum()

除了求和之外还有判断个数此时等同于count

pd.isnull.sum()

.dtypes

DataFrame.dtypes

返回DataFrame中的dtypes

这将返回一个Series,其中包含每列的数据类型。结果的索引是原始DataFrame的列。具有混合类型的列与objectdtype 一起存储

1.type() 返回参数的数据类型

2.dtype 返回数组中元素的数据类型

3.astype() 对数据类型进行转换

value_counts()

value_counts()是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中有多少重复值。

所以就是统计

In [3]: volunteer["category_desc"].value_counts()
Out[3]:
Strengthening Communities 307
Helping Neighbors in Need 119
Education 92
Health 52
Environment 32
Emergency Preparedness 15
Name: category_desc, dtype: int64

apply

我先放个栗子,后面继续补充这个函数,感觉做一些简单的处理很好用

# Create a list of the columns to average
run_columns = ["run1", "run2", "run3", "run4", "run5"] # Use apply to create a mean column
running_times_5k["mean"] = running_times_5k.apply(lambda row: row[run_columns].mean(), axis=1) # Take a look at the results
print(running_times_5k)
script.py> output:
name run1 run2 run3 run4 run5 mean
0 Sue 20.1 18.5 19.6 20.3 18.3 19.36
1 Mark 16.5 17.1 16.9 17.6 17.3 17.08
2 Sean 23.5 25.1 25.2 24.6 23.9 24.46
3 Erin 21.7 21.1 20.9 22.1 22.2 21.60
4 Jenny 25.8 27.1 26.1 26.7 26.9 26.52
5 Russell 30.9 29.6 31.4 30.4 29.9 30.44

python常见函数积累的更多相关文章

  1. python常见函数以及模块调用

    1.常用函数区别 print: 在python3.0中print是函数,这意味着需要编写print(A )而不是print A str()和repr()的区别 >>>print st ...

  2. python爬虫积累(一)--------selenium+python+PhantomJS的使用(转)

    阅读目录 一.Selenium介绍 二.爬虫为什么要用selenium? 三.PhantomJS介绍 四.PhantomJS安装 五.操作实战 六.在此推荐虫师博客的学习资料 selenium + p ...

  3. Python学习积累:使用help();打印多个变量;fileno()

    1.使用篇: 1.1如何从help()退出: 直接回车即可! 2.技能篇: 2.1 如何一次性打印多个变量? 多个变量中间使用逗号隔开,且引用变量为%(变量1,变量2,变量3), 2.2fileno( ...

  4. python爬虫积累(一)--------selenium+python+PhantomJS的使用

    最近按公司要求,爬取相关网站时,发现没有找到js包的地址,我就采用selenium来爬取信息,相关实战链接:python爬虫实战(一)--------中国作物种质信息网 一.Selenium介绍 Se ...

  5. python知识积累

    1. 安装requirements.txt依赖: pip install -r requirements.txt 生成requirements.txt文件: pip freeze > requi ...

  6. Python 自学积累(二)

    1. onfigParser 模块用于操作配置文件 注:Parser汉译为“解析”之意. 配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数( ...

  7. Python 自学积累(一)

    1. 当"print os.path.dirname(__file__)"所在脚本是以完整路径被运行的, 那么将输出该脚本所在的完整路径,比如: python d:/pythonS ...

  8. python常见函数运用【一】

    1.Python hasattr() 函数 描述hasattr() 函数用于判断对象是否包含对应的属性. 语法 hasattr 语法: hasattr(object, name)参数object -- ...

  9. Python 日常积累

    包管理 >from ... import ... 的用法和直接import的区别 直接使用import时,如果需要使用到导入模块内的属性和方法,必须使用模块名.属性和模块名.方法的方式进行调用 ...

随机推荐

  1. 《 Java 编程思想》CH08 多态

    在面向对象的程序设计语言中,多态是继数据抽象和继承之后的第三种基本特征. 多态通过分离做什么和怎么做,从另一个角度将接口和实现分离开来. "封装"通过合并特征和行为来创建新的数据类 ...

  2. Java开发最佳实践(一) ——《Java开发手册》之"编程规约"

    Java开发手册版本更新说明 专有名词解释 一. 编程规约 (一) 命名风格 (二) 常量定义 (三) 代码格式 (四) OOP 规约 (五) 集合处理 (六) 并发处理 (七) 控制语句 (八) 注 ...

  3. 关于ELF文件和BIN文件

    ELF文件执行过程 ELF文件有操作系统的加载器loader执行,比如linux,windows,对于3803处理器是grmon的load命令. 加载器会读取ELF文件program header,比 ...

  4. Sparc V8

    Sparc V8指令 在sparc V8手册中p83(Table A-1 Mapping of Synthetic Instructions to SPARC Instructions)有合成指令sy ...

  5. ELK 记录 java log4j 类型日志

    ELK 记载  java log4j 时,一个报错会生成很多行,阅读起来很不方便. 类似这样 解决这个问题的方法 1.使用多行合并 合并多行数据(Multiline) 有些时候,应用程序调试日志会包含 ...

  6. Linux 配置ip 子接口 多网卡绑定

    linux系统配置ip地址,图形化界面略过,这里只介绍文本行.做以下设置注意是否有此权限 查看当前路由及网关信息: [root@localhost ~]# netstat -r Kernel IP r ...

  7. 蓝桥杯ALGO-1,区间k大数查询

    #include<stdio.h> int devide(long a[], int low, int high) { long key = a[high]; while (low< ...

  8. 4.【Spring Cloud Alibaba】服务容错-sentinel

    雪崩效应 常见容错方案 超时 限流 仓壁模式 断路器模式 断路器三态转换 使用Sentinel实现容错 什么是Sentinel https://github.com/alibaba/Sentinel ...

  9. Windows-server-2008-R2安装Oracle-11g-R2-dataguard

    一.安装环境 1.服务器环境:Windows server 2008 R2 x64 Standard 两台 CPU:8核 内存:8G 硬盘空间:1060G 2.软件:oracle 11g R2 二.安 ...

  10. iis添加asp.net网站,访问提示:由于扩展配置问题而无法提供您请求的页面。如果该页面是脚本,请添加处理程序。如果应下载文件,请添加 MIME 映射

    今天在iis服务器配置asp.net网站,遇到一个问题,记录一下: 问题:由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序.如果应下载文件,请添加 MIME 映射. Windo ...