LOJ#508. 「LibreOJ NOI Round #1」失控的未来交通工具
题意
一个带边权无向图,有两种操作:加边以及询问在\(x,x+b,...,x+(c-1)b\)这些数中,有多少个数存在至少一条与之模\(m\)同余的从\(u\)到\(v\)的路径(可以不是简单路径)。
做法
奇数
考虑某一边\((u,v,w)\in E\),从\(u\)到\(v\),通过来回绕圈的方式,能形成\(2k+1\)的关于\(w\)系数,将其放在模意义考虑,通过调整\(m\)的系数,能产生\(w\)的任意整数系数;
故能贡献\((w,m)\)任意倍系数;
整个\(E\)能构成的贡献就为\((w_1,w_2,...,w_{|E|},n)\)的任意倍数;任意数
考虑一个环(简单环和复杂度均可),其可以被单独走任意倍数,只需起点走\(m\)倍即可把除环之外的边消掉
设\(g\)为所有环的\(gcd\)(包括\(m\))
而此时再选择任意一条路径都可以,因为其他路径可以靠\(g\)补上去
LOJ#508. 「LibreOJ NOI Round #1」失控的未来交通工具的更多相关文章
- LOJ 510: 「LibreOJ NOI Round #1」北校门外的回忆
题目传送门:LOJ #510. 题意简述: 给出一个在 \(K\) 进制下的树状数组,但是它的实现有问题. 形式化地说,令 \(\mathrm{lowbit}(x)\) 为在 \(K\) 进制下的 \ ...
- LOJ#510. 「LibreOJ NOI Round #1」北校门外的回忆(线段树)
题面 传送门 题解 感谢\(@M\_sea\)的代码我总算看懂题解了-- 这个操作的本质就是每次把\(x\)的\(k\)进制最低位乘\(2\)并进位,根据基本同余芝士如果\(k\)是奇数那么最低位永远 ...
- 「LibreOJ NOI Round #2」不等关系
「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...
- LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿
二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...
- LOJ575. 「LibreOJ NOI Round #2」不等关系 [容斥,分治FFT]
LOJ 思路 发现既有大于又有小于比较难办,使用容斥,把大于改成任意减去小于的. 于是最后的串就长成这样:<<?<?<??<<<?<.我们把一段连续的& ...
- 「LibreOJ NOI Round #1」验题
麻烦的动态DP写了2天 简化题意:给树,求比给定独立集字典序大k的独立集是哪一个 主要思路: k排名都是类似二分的按位确定过程. 字典序比较本质是LCP下一位,故枚举LCP,看多出来了多少个独立集,然 ...
- #509. 「LibreOJ NOI Round #1」动态几何问题
下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...
- #510. 「LibreOJ NOI Round #1」动态几何问题
题目: 题解: 几何部分,先证明一下 \(KX = \sqrt{a},YL = \sqrt{b}\) 设左侧的圆心为 \(O\) ,连接 \(OK\) ,我们有 \(OK = r\). 然后有 \(r ...
- #507. 「LibreOJ NOI Round #1」接竹竿 dp
题目: 题解: 我们考虑把每对花色相同的牌看作区间. 那么如果我们设 \(f_i\) 表示决策在 \([1,i]\) 内的最优答案. 那么有 \(f_i = max\{max\{(f_{j-1}+\s ...
随机推荐
- C/C++中的排序和查找
以下内容来自<C/C++程序设计实用案例教程> 1.排序 1.1使用qsort函数 C/C++库函数提供了快速排序函数qsort(q时quick的简写),需要引入头文件<stdlib ...
- Update、Insert注入技巧
title: Update.Insert注入技巧 date: 2017-10-23 18:07:57 tags: ["注入"] 审计了不少代码,再看代码的时候最多出现的就是注入,很 ...
- 11-MyBatis01
今日知识 1. MyBatis简介 2. MyBatis入门 3. 全局配置文件其他配置 4. MyBatis的映射文件 5. 动态SQL 6. mybatis和hibernate区别 MyBatis ...
- Tensorflow和pytorch安装(windows安装)
一. Tensorflow安装 1. Tensorflow介绍 Tensorflow是广泛使用的实现机器学习以及其它涉及大量数学运算的算法库之一.Tensorflow由Google开发,是GitHub ...
- vue自由拖拽、缩放组件
github地址:https://github.com/kirillmurashov/vue-drag-resize 安装: npm i -s vue-drag-resize 使用: <temp ...
- 【HDU - 2859 】Phalanx (dp 最大对称子图)
Phalanx 先搬翻译 Descriptions: 给你一个矩阵,只由小写或大写字母构成.求出它的最大对称子矩阵的边长. 其中对称矩阵是一个k*k的矩阵,它的元素关于从左下角到右上角的对角线对称.例 ...
- 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(11.1)- FlexSPI NOR连接方式大全(RT1015/1020/1050)
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1015/1020/1050三款MCU的FlexSPI NOR启动的连接方式. 由于i.MXRT内部没有非易失性存储 ...
- Hadoop搭建record下
前言 先说一下当前环境:Ubuntu18.04 jdk1.8 Hadoop选用-2.6.0-cdh5.15.1 用户名:supershuai-VirtualBox Hadoop的下载地址:http:/ ...
- AndroidStudio跑起来第一个App时新手遇到的那些坑
场景 当你看了一个Android教程,满心欢喜想要运行第一个HelloWorld时却发现,Android Studio新建的工程老是报错. 会编译不通过.运行按钮灰色.没有虚拟机,一个简简单单的Hel ...
- 软件测试常见术语(英->汉)收藏好随时备用!
Defect 缺陷Defect Rate 缺陷率Verification & Validation 验证和确认Failure 故障White-box Testing 白盒测试Black-box ...