@题目描述@

在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 n、面额数组为 a[1..n] 的货币系统记作 (n,a)。

在一个完善的货币系统中,每一个非负整数的金额 x 都应该可以被表示出,即对每一个非负整数 x,都存在 n 个非负整数 t[i] 满足 a[i]×t[i] 的和为 x。然而, 在网友的国度中,货币系统可能是不完善的,即可能存在金额 x 不能被该货币系统表示出。例如在货币系统 n=3, a=[2,5,9] 中,金额 1,3 就无法被表示出来。

两个货币系统 (n,a) 和 (m,b) 是等价的,当且仅当对于任意非负整数 x,它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

现在网友们打算简化一下货币系统。他们希望找到一个货币系统 (m,b),满足 (m,b) 与原来的货币系统 (n,a) 等价,且 m 尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的 m。

输入

输入文件的第一行包含一个整数 T,表示数据的组数。

接下来按照如下格式分别给出 T 组数据。 每组数据的第一行包含一个正整数 n。接下来一行包含 n 个由空格隔开的正整数 a[i]。

输出

输出文件共有 T 行,对于每组数据,输出一行一个正整数,表示所有与 (n,a) 等价的货币系统 (m,b) 中,最小的 m。

输入样例#1

2

4

3 19 10 6

5

11 29 13 19 17

输出样例#1

2

5

输入输出样例 1说明

在第一组数据中,货币系统 (2, [3,10]) 和给出的货币系统 (n,a) 等价,并可以验证不存在 m < 2 的等价的货币系统,因此答案为 2。 在第二组数据中,可以验证不存在 m < n 的等价的货币系统,因此答案为 5。

@题解@

一个结论性的题目……吧。

首先手推一下,发现新货币系统中的最小值 \(m'\) 一定等于原来的货币系统中的最小值 \(m\)。如果大于,则新货币系统无法表达 \(m\);如果小于,则原货币系统无法表达 \(m'\)。

然后我们递归性地猜想:假如我去掉了这个最小值以及最小值能表达的数(因为新货币系统里面如果再有这些数就不够优秀了),那么再选择最小值是否也一定是最优的?

仿照上面的证明可以发现这个推论是正确的。

因此我们就可以得到我们的算法:

(1)找到原货币系统当前的最小值,加入新货币系统。

(2)在原货币系统中删除新货币系统能表达的数。

循环(1),(2)直到原货币系统没有任何数。

我们实现上可以不按这么写。我们可以从小到大枚举原货币系统中的数,判断它能否被新货币系统表达。能则跳过;不能则更新新货币系统。

判断以及更新可以用完全背包来做。

@代码@

应该说,这道题算是一道简单题。只是需要你去推导一些东西 qwq。

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 100;
const int MAXM = 25000;
bool dp[MAXM + 5];
int a[MAXN + 5];
void solve() {
int n, m = 0, lim = 0;
scanf("%d", &n);
for(int i=1;i<=n;i++) {
scanf("%d", &a[i]);
lim = max(lim, a[i]);
}
for(int i=0;i<=lim;i++)
dp[i] = false;
sort(a+1, a+n+1); dp[0] = true;
for(int i=1;i<=n;i++) {
if( !dp[a[i]] ) {
for(int j=a[i];j<=lim;j++)
dp[j] |= dp[j-a[i]];
m++;
}
}
printf("%d\n", m);
}
int main() {
int T;
scanf("%d", &T);
for(int i=1;i<=T;i++)
solve();
return 0;
}

@NOIP2018 - D1T2@ 货币系统的更多相关文章

  1. $Noip2018/Luogu5020$ 货币系统 $dp$

    $Luogu$ 去年我这题获得了$20$的好分数$ovo..........$ $Sol$ 现在来看其实非常显然叭,只要把能被别的数表示出来的数去掉就好了. $f[i]$表示$i$数能否被其他数表示. ...

  2. [NOIp2018提高组]货币系统

    [NOIp2018提高组]货币系统 题目大意: 有\(n(n\le100)\)种不同的货币,每种货币的面额为\([1,25000]\)之间的一个整数.若两种货币系统能够组合出来的数是相同的的,那我们就 ...

  3. 【LG5020】[NOIP2018]货币系统

    [LG5020][NOIP2018]货币系统 题面 洛谷 题解 考场上第一眼还不会233 可以发现只要可以被其他的货币通过一些奇奇怪怪的方式表示出来的货币就\(ban\)掉即可 就是个完全背包 我是统 ...

  4. luogu5020 [NOIp2018]货币系统 (完全背包)

    我那个新的货币系统,就是把原来的货币系统中能被其他数表示的数删掉 那我就算有多少数能被别的数表示,那肯定是要被比它小的表示 于是排个序做完全背包就好了 但是我太zz不会完全背包,然后写了个bitset ...

  5. 【数学】【背包】【NOIP2018】P5020 货币系统

    传送门 Description 在网友的国度中共有 \(n\) 种不同面额的货币,第 \(i\) 种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为 \(n ...

  6. [NOIp2018] luogu P5020 货币系统

    还在补暑假作业. 题目描述 你有一个由 NNN 种面值的货币组成的货币系统.定义两个货币系统等价,当且仅当 ∀x∈N∗\forall x\in\N^*∀x∈N∗ 要么同时能被两个货币系统表示,要么同时 ...

  7. NOIP2018货币系统

    题目大意 给出一组数,求出其中共有多少数不能被其他数表示 解题思路 法一:可爱的动态规划 这个思路还是比较好想的(也比较好写?) 有依赖关系的背包,思路这道题是差不多的 填满型01背包 (关于代码) ...

  8. 洛谷 P1474 货币系统 Money Systems

    P1474 货币系统 Money Systems !! 不是noip2018的那道题. 简单的多重背包的变式. #include <iostream> #include <cstdi ...

  9. 洛谷P1474 货币系统 Money Systems

    P1474 货币系统 Money Systems 250通过 553提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 母牛们不但创 ...

随机推荐

  1. TZ_05_Spring_Transaction的纯注解开发

    1.数据库配置 jdbcConfiguation.java 1>使用Spring的EL表达式配合@Value()注解 @Value("${jdbc.Driver}") pri ...

  2. mockito问题集

    使用PowerMockRunner.class,不能在测试类中使用IntStream.rang()

  3. Delphi 设计模式:《HeadFirst设计模式》Delphi7代码---策略模式之MiniDuckSimulator[转]

     1  2{<HeadFirst设计模式>之策略模式 }  3{ 本单元中的类为策略类           }  4{ 编译工具: Delphi7.0           }  5{ E- ...

  4. 日志lombok插件安装及配置

    安装lombok插件 下载Lombok.jar http://projectlombok.googlecode.com/files/lombok.jar 运行Lombok.jar java -jar ...

  5. day37 08-Hibernate的反向工程

    反向工程:先创建表,创建好表之后,就是持久化类和映射文件可以不用你写,而且你的DAO它也可以帮你生成.但是它生成的DAO可能会多很多的方法.你可以不用那么多方法,但是它里面提供了这种的.用hibern ...

  6. Spring 的初次见面

    简介: Spring Framework 是一个开源的企业级应用程序框架,为构建满足企业级需求的应用程序提供了大量的工具集.推出该框架的原因是在时候用J2EE进行开发是会提高复杂性. Spring三大 ...

  7. 洛谷P1263 宫廷守卫

    P1263 宫廷守卫 题目描述 从前有一个王国,这个王国的城堡是一个矩形,被分为M×N个方格.一些方格是墙,而另一些是空地.这个王国的国王在城堡里设了一些陷阱,每个陷阱占据一块空地. 一天,国王决定在 ...

  8. js实现使用递归来计算1~任意数字的和

    function getSum(n){ if(n==1){ return 1; } return n+getSum(n-1); } var res = getSum(100); console.log ...

  9. mac 下的 homebrew

    如果安装了macport 就不能安装homebrew ,必须先卸载macport $ sudo port -f uninstall installed$ sudo rm -rf \/opt/local ...

  10. 【JZOJ5094】【GDSOI2017第四轮模拟day3】鸽子 计算几何+floyd

    题面 养鸽人要监视他的鸽子,有n只鸽子站在平面上,他可以在m个给定的点上设置监视器,如果一只鸽子在某个监视器上或者在两个监视器所连直线上或者在三个监视器所连直线的三角形内则其就咕咕咕了,现在养鸽人要让 ...