1236 - Pairs Forming LCM
Find the result of the following code:
long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).
Output
For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'
分析:题意1到n中存在多少对(a,b)满足lcm(a, b)==n。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
typedef long long ll;
const int maxn = 1e7+5;
int prim[maxn/10] ;
int k;
int vis[maxn];
void init() //线性筛
{
k = 0;
for(int i = 2; i < maxn; ++i)
{
if(!vis[i]) prim[k++] = i;
for(int j = 0; j < k && prim[j] * i < maxn; ++j)
{
vis[prim[j] * i] = 1;
if(i % prim[j] == 0) break;
}
}
}
int main(void)
{
int T, cas;
ll n;
scanf("%d", &T);
cas = 0;
init();
while(T--)
{
cas++;
scanf("%lld", &n);
ll ans = 1;
for(int i = 0; i < k; i++)
{
ll x = 0;
if((ll)(prim[i]) * prim[i] > n)
break;
while(n % prim[i] == 0)
{
x++;
n /= prim[i];
}
if(x)
ans *= 2 * x + 1;
}
if(n > 1)///n>1表示最后还剩一个素因子,比如6,20,并且这个素因子的平方大于n,再循环中没有处理。剩余最后一个因子按分析中的方法它对应三种取法,所以最后乘在ans上。
ans *= 3;
printf("Case %d: %lld\n", cas, ans / 2 + 1);
}
return 0;
}
1236 - Pairs Forming LCM的更多相关文章
- LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS Memor ...
- LightOJ 1236 - Pairs Forming LCM(素因子分解)
B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )
题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i, j)满足 LCM(i, j) = n, ...
- Light oj 1236 - Pairs Forming LCM (约数的状压思想)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意很好懂,就是让你求lcm(i , j)的i与j的对数. 可以先预处理1e7以 ...
- LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)
链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...
- 1236 - Pairs Forming LCM -- LightOj1236 (LCM)
http://lightoj.com/volume_showproblem.php?problem=1236 题目大意: 给你一个数n,让你求1到n之间的数(a,b && a<= ...
- LightOJ 1236 Pairs Forming LCM 合数分解
题意:求所有小于等于n的,x,y&&lcm(x,y)==n的个数 分析:因为n是最小公倍数,所以x,y都是n的因子,而且满足这样的因子必须保证互质,由于n=1e14,所以最多大概在2^ ...
- LightOj 1236 Pairs Forming LCM (素数筛选&&唯一分解定理)
题目大意: 有一个数n,满足lcm(i,j)==n并且i<=j时,(i,j)有多少种情况? 解题思路: n可以表示为:n=p1^x1*p2^x1.....pk^xk. 假设lcm(a,b) == ...
- LightOJ 1236 Pairs Forming LCM【整数分解】
题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1236 题意: 找与n公倍数为n的个数. 分析: ...
随机推荐
- 【X86】---X86处理器大小端的数据存储验证
之前也关注过大小端的存储,可能时间久了,加之又之前的电脑抽象换成了当前的处理器寄存器的值判断,导致自己总是有点蒙圈.看Spec手册的时候,有时会无法与手册中某个Bit的值与RU/RW工具读出来的对应上 ...
- git查看远程仓库和本地的区别
git diff 你可以用 git diff 来比较项目中任意两个版本的差异. $ git diff master..test 上面这条命令只显示两个分支间的差异,如果你想找出 master , te ...
- [LOJ#3022][网络流]「CQOI2017」老 C 的方块
题目传送门 定义有特殊边相邻的格子颜色为黑,否则为白 可以看出,题目给出的限制条件的本质是如果两个小方块所在的格子 \(x\) 和 \(y\) 为两个相邻的黑格,那么 \(x\) 和 \(y\) 之间 ...
- URL各部分详解
就以下面这个URL为例,介绍下普通URL的各部分组成 http://www.aspxfans.com:8080/news/index.asp?boardID=5&ID=24618&pa ...
- 并发队列之ConcurrentLinkedQueue
本来想着直接说线程池的,不过在说线程池之前,我们必须要知道并发安全队列:因为一般情况下线程池中的线程数量是一定的,肯定不会超过某个阈值,那么当任务太多了的时候,我们必须把多余的任务保存到并发安全队列中 ...
- CAD制图系列之椭圆画法标注
今天我将做一个极轴是92,150的椭圆画法和标注方法 1.打开2014版本CAD制图,快捷键EL,回车: 2.自己随便定一个点 3.输入第一个值,也就是短轴--横轴(输入实际长度,不需要除以二)并且鼠 ...
- VirtualBox桥接网络,设置虚拟机联网,连接VirtualBox虚拟系统中的数据库等
由于最近搭建一个项目自己的阿里云的服务器内存不足,自己笔记本使用VitrualBox电脑虚拟linux系统来搭建,把这次使用过程遇到的问题记录下来也能帮助遇到同样的小伙伴. 软件: VirtualBo ...
- javase第一章(了解java)
------------恢复内容开始------------ java介绍 java这门语言,如果你是一名IT从业者,那么就一定是会有所耳闻的,毕竟,这是编程史上其商业化最成功的一门语言,当然, 编程 ...
- javabst1an
(单选题)下列概念中不包括任何实现,与存储空间没有任何关系的是() A)类 B)接口 C)抽象类 D)对象 正确答案为:B解析:接口是一种只含有抽象方法或常量的一种特殊的抽象类,因为接口不包括任何实现 ...
- 【搞定面试官】- Synchronized如何实现同步?锁优化?(1)
前言 说起Java面试中最高频的知识点非多线程莫属.每每提起多线程都绕不过一个Java关键字--synchronized.我们都知道该关键字可以保证在同一时刻,只有一个线程可以执行某个方法或者某个代码 ...