Calinski-Harabaz(CH)

CH指标通过计算类中各点与类中心的距离平方和来度量类内的紧密度,通过计算各类中心点与数据集中心点距离平方和来度量数据集的分离度,CH指标由分离度与紧密度的比值得到。从而,CH越大代表着类自身越紧密,类与类之间越分散,即更优的聚类结果。

在scikit-learn中, Calinski-Harabasz Index对应的方法是metrics.calinski_harabaz_score.

CH和轮廓系数适用于实际类别信息未知的情况,以下以K-means为例,给定聚类数目K,则:

类内散度为:

W(K)=∑k=1K∑C(j)=k||xj−x¯¯¯k||2 W(K)=∑k=1K∑C(j)=k||xj−x¯k||2 类间散度:

B(K)=∑k=1Kak||x¯¯¯k−x¯¯¯||2 B(K)=∑k=1Kak||x¯k−x¯||2 则CH为:

CH(K)=B(K)(N−K)W(K)(K−1) CH(K)=B(K)(N−K)W(K)(K−1)

CH相对来说速度可能会更快。

在这里我自己码了一个kmeans的代码,计算并输出其中的ch和轮廓系数

from sklearn.cluster import KMeans
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics import calinski_harabaz_score
from sklearn import metrics
from sklearn import preprocessing
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
                 random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
#X=np.array([[2,3,6],[8,7,9],[2,8,3],[3,6,1]])


k=5


y_pred = KMeans(n_clusters=k, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

c=KMeans(n_clusters=k, random_state=7)
y_pred = c.fit_predict(X)
kmeans_model = c.fit(X)
labels = kmeans_model.labels_
print('这个是k={}次时的CH值:'.format(k),metrics.calinski_harabaz_score(X,y_pred))
print('这个是k={}次时的轮廓系数:'.format(k),metrics.silhouette_score(X, labels, metric='euclidean'))

【聚类评价】Calinski-Harabaz(CH)的更多相关文章

  1. R中K-Means、Clara、C-Means三种聚类的评估

    R中cluster中包含多种聚类算法,下面通过某个数据集,进行三种聚类算法的评估 # ============================ # 评估聚类 # # ================= ...

  2. 零基础学习Kmeans聚类算法的原理与实现过程

    内容导入: 聚类是无监督学习的典型例子,聚类也能为企业运营中也发挥者巨大的作用,比如我们可以利用聚类对目标用户进行群体分类,把目标群体划分成几个具有明显特征区别的细分群体,从而可以在运营活动中为这些细 ...

  3. 用K-Means聚类分析做客户分群

    聚类指的是把集合,分组成多个类,每个类中的对象都是彼此相似的.K-means是聚类中最常用的方法之一,它是基于点与点距离的相似度来计算最佳类别归属. 在使用该方法前,要注意(1)对数据异常值的处理:( ...

  4. python基础全部知识点整理,超级全(20万字+)

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  5. 巩固复习(Hany驿站原创)_python的礼物

    Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https://www ...

  6. 【机器学习】--Kmeans从初识到应用

    一.前述 Kmeans算法一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点. Kmeans算法是一种无监督的算法. 常用于分组,比如用户偏好. 二.概念及原理 Km ...

  7. Python—kmeans算法学习笔记

    一.   什么是聚类 聚类简单的说就是要把一个文档集合根据文档的相似性把文档分成若干类,但是究竟分成多少类,这个要取决于文档集合里文档自身的性质.下面这个图就是一个简单的例子,我们可以把不同的文档聚合 ...

  8. python分类预测模型的特点

    python分类预测模型的特点 模型 模型特点 位于 SVM 强大的模型,可以用来回归,预测,分类等,而根据选取不同的和函数,模型可以是线性的/非线性的 sklearn.svm 决策树 基于" ...

  9. java基础学习总结——GUI编程(一) 还未仔细阅读

    一.AWT介绍

随机推荐

  1. H3C 配置静态及动态域名解析

  2. linux自旋锁函数

    我们已经看到 2 个函数, spin_lock 和 spin_unlock, 可以操作自旋锁. 有其他几个函 数, 然而, 有类似的名子和用途. 我们现在会展示全套. 这个讨论将带我们到一个我们无 法 ...

  3. JS 逻辑运算符 ||、 &&, 位运算符 |、&

    1.JS中的||符号: 运算方法: 只要“||”前面为false,不管“||”后面是true还是false,都返回“||”后面的值. 只要“||”前面为true,不管“||”后面是true还是fals ...

  4. H3C使用ping命令--用户视图

    完整的ping命令,用于下面参考 <H3C>ping 1.1.1.1   PING 1.1.1.1: 56  data bytes, press CTRL_C to break     R ...

  5. 【b503】篝火晚会

    Time Limit: 1 second Memory Limit: 50 MB [问题描述] 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官" ...

  6. Linux 内核即插即用规范

    一些新 ISA 设备板遵循特殊的设计规范并且需要一个特别的初始化顺序, 对增加接口板 的简单安装和配置的扩展. 这些板的设计规范称为即插即用, 由一个麻烦的规则集组成, 来建立和配置无跳线的 ISA ...

  7. Team Foundation Server 2015使用教程【8】:读取器tfs组的checkin权限修改

  8. linux中的文件类型标记方法

    在ls -l显示的详细信息中有以下信息: -rw-r--r-- drwxr-xr-x 一共10个字符,第一个字符表示文件类型,后面9个字符分成3组表示文件权限.前三个表示属主(拥有者)对文件的权限,中 ...

  9. hadoop常用端口及定义方法

    hadoop2.x常用到的组件:HDFS, YARN, HBase, Hive, ZooKeeper: 组件 节点 默认端口 配置 用途说明HDFS DataNode 50010 dfs.datano ...

  10. centos7搭建hadoop2.10伪分布模式

    1.准备一台Vmware虚拟机,添加hdfs用户及用户组,配置网络见 https://www.cnblogs.com/qixing/p/11396835.html 在root用户下 添加hdfs用户, ...