Calinski-Harabaz(CH)

CH指标通过计算类中各点与类中心的距离平方和来度量类内的紧密度,通过计算各类中心点与数据集中心点距离平方和来度量数据集的分离度,CH指标由分离度与紧密度的比值得到。从而,CH越大代表着类自身越紧密,类与类之间越分散,即更优的聚类结果。

在scikit-learn中, Calinski-Harabasz Index对应的方法是metrics.calinski_harabaz_score.

CH和轮廓系数适用于实际类别信息未知的情况,以下以K-means为例,给定聚类数目K,则:

类内散度为:

W(K)=∑k=1K∑C(j)=k||xj−x¯¯¯k||2 W(K)=∑k=1K∑C(j)=k||xj−x¯k||2 类间散度:

B(K)=∑k=1Kak||x¯¯¯k−x¯¯¯||2 B(K)=∑k=1Kak||x¯k−x¯||2 则CH为:

CH(K)=B(K)(N−K)W(K)(K−1) CH(K)=B(K)(N−K)W(K)(K−1)

CH相对来说速度可能会更快。

在这里我自己码了一个kmeans的代码,计算并输出其中的ch和轮廓系数

from sklearn.cluster import KMeans
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics import calinski_harabaz_score
from sklearn import metrics
from sklearn import preprocessing
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
                 random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
#X=np.array([[2,3,6],[8,7,9],[2,8,3],[3,6,1]])


k=5


y_pred = KMeans(n_clusters=k, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

c=KMeans(n_clusters=k, random_state=7)
y_pred = c.fit_predict(X)
kmeans_model = c.fit(X)
labels = kmeans_model.labels_
print('这个是k={}次时的CH值:'.format(k),metrics.calinski_harabaz_score(X,y_pred))
print('这个是k={}次时的轮廓系数:'.format(k),metrics.silhouette_score(X, labels, metric='euclidean'))

【聚类评价】Calinski-Harabaz(CH)的更多相关文章

  1. R中K-Means、Clara、C-Means三种聚类的评估

    R中cluster中包含多种聚类算法,下面通过某个数据集,进行三种聚类算法的评估 # ============================ # 评估聚类 # # ================= ...

  2. 零基础学习Kmeans聚类算法的原理与实现过程

    内容导入: 聚类是无监督学习的典型例子,聚类也能为企业运营中也发挥者巨大的作用,比如我们可以利用聚类对目标用户进行群体分类,把目标群体划分成几个具有明显特征区别的细分群体,从而可以在运营活动中为这些细 ...

  3. 用K-Means聚类分析做客户分群

    聚类指的是把集合,分组成多个类,每个类中的对象都是彼此相似的.K-means是聚类中最常用的方法之一,它是基于点与点距离的相似度来计算最佳类别归属. 在使用该方法前,要注意(1)对数据异常值的处理:( ...

  4. python基础全部知识点整理,超级全(20万字+)

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  5. 巩固复习(Hany驿站原创)_python的礼物

    Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https://www ...

  6. 【机器学习】--Kmeans从初识到应用

    一.前述 Kmeans算法一般在数据分析前期使用,选取适当的k,将数据分类后,然后分类研究不同聚类下数据的特点. Kmeans算法是一种无监督的算法. 常用于分组,比如用户偏好. 二.概念及原理 Km ...

  7. Python—kmeans算法学习笔记

    一.   什么是聚类 聚类简单的说就是要把一个文档集合根据文档的相似性把文档分成若干类,但是究竟分成多少类,这个要取决于文档集合里文档自身的性质.下面这个图就是一个简单的例子,我们可以把不同的文档聚合 ...

  8. python分类预测模型的特点

    python分类预测模型的特点 模型 模型特点 位于 SVM 强大的模型,可以用来回归,预测,分类等,而根据选取不同的和函数,模型可以是线性的/非线性的 sklearn.svm 决策树 基于" ...

  9. java基础学习总结——GUI编程(一) 还未仔细阅读

    一.AWT介绍

随机推荐

  1. javascript基础的一些总结

    一 闭包 各种专业文献上的"闭包"(closure)定义非常抽象,很难看懂.我的理解是,闭包就是能够读取其他函数内部变量的函数. 由于在Javascript语言中,只有函数内部的子 ...

  2. JUnit4---Hamcrest匹配器常用方法总结

    一.Hamcrest是什么? Hamcrest is a library of matchers, which can be combined in to create flexible expres ...

  3. 5.29 SD省队培训D1

    5.29 SD省队培训D1 自闭的一天 T1 梦批糼 先咕一咕(两天之内一定补上) T2 等你哈苏德 继续咕(一星期之内补上) T3喜欢最最痛 四十分做法: 首先,我们发现同一个点加两条额外边是一件非 ...

  4. 2018-2-13-Xamarin-Forms-进度条控件

    title author date CreateTime categories Xamarin Forms 进度条控件 lindexi 2018-2-13 17:23:3 +0800 2018-2-1 ...

  5. [POJ2528]Mayor's posters(离散化+线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 70365   Accepted: 20306 ...

  6. 纵我不往,知识不来--学习Java第一周心得

    暑假第一周,也是开始学习java的第一周. 本周的主要时间花在了小学期的任务上,但也草草开始了java的学习.首先安装好了所需要的软件,然后在网上下载了一份<Java基础笔记>,看了前五章 ...

  7. 破解第一个程序----分析APK文件

    反编译APK成功后,在outdir目录下会生成一系列目录与文件. smali:程序所有的反汇编代码: res:程序中所有的资源文件: 如何寻找突破口是分析程序的关键.错误提示一般是指引关键代码的风向标 ...

  8. 用VISA工具驱动继电器外设

    1.驱动方式:TCP 2.开发过程 第一步:外设识别 TCP方式将继电器插上网线后,并不能像串口一样自动识别到这个外设,需要手动连接.打开NI MAX后,右击设备与接口,然后点击新建,双击VISA T ...

  9. 循环语句作业与循环补充(continue与break)

    作业: 1.使用while循环输入1 2 3 4 5 6 8 9 10(没有7) n = 1 while n < 11: if n == 7: pass else: print(n) n = n ...

  10. 20191024-3 互评Alpha阶段作品——都是为了生活组

    此作业要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/9860 评价:都是为了生活组——All  For  Eating 基于NAB ...