题描:

有三个均匀的骰子,分别有k1,k2,k3个面,初始分数是0,
当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和,
当分数>n的时候结束。求需要掷骰子的次数的期望。

令f[i]为当前三个骰子点数和为i时掷骰子期望次数

则易有:(逆推)

$$f[i]=\sum({p[k]*f[i+k]})+f[0]*P_0+1$$

然而这是逆推...

咱并不知道$f[0]$的值

凉了

吗?

注意到求$f[i]$时跟它有关的所有f[k]中只有f[0]是未知的,那我们就把这玩意儿当做未知数

列方程:

令$f[i]=A_i*f[0]+B_i$(①),则有:

$$f[i+k]=A_{i+k}*f[0]+B_{i+k}$$

代入①式有:

$$f[i]=\sum[p[k]*(A_{i+k}*f[0]+B_{i+k})]+f[0]*P_0+1$$

(②)

(p[k]表示三个骰子掷出和为k时的概率)

变形得:

$$f[i]=[\sum(p[k]*A_{i+k})+P_0]*f[0]+\sum(p[k]*B_{i+k})+1$$

(③)

这样就能发现③式与①式的形式已经大致相同了.

综上:

$$A_i= \sum(p[k]*A_{i+k})+P_0$$

$$B_i=\sum(p[k]*B_{i+k})+1$$

令:$i=0$

有:

$$f[0]=A_0*f[0]+B_0$$

综上:$$f[0]=\frac{B_0}{1-A_0}$$

而f[0]就是我们最后要求的答案

所以我们只需要求a[]和b[]就可以啦

 #include<bits/stdc++.h>
#define writeln(x) write(x),puts("")
#define writep(x) write(x),putchar(' ')
using namespace std;
inline int read(){
int ans=,f=;char chr=getchar();
while(!isdigit(chr)){if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)){ans=(ans<<)+(ans<<)+chr-;chr=getchar();}
return ans*f;
}void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}const int M = ;
int k[M],q[M],n;
double P,p[M],a[M],b[M];
inline void Clear_All(){memset(a,,sizeof(a)),memset(b,,sizeof(b)),memset(p,,sizeof(p));}
int main(){
int T=read();
while(Clear_All(),T--){
n=read();
for(int i=;i<=;i++) k[i]=read();
for(int i=;i<=;i++) q[i]=read();
P=1.0/(k[]*k[]*k[]);
for(int i=;i<=k[];i++)
for(int j=;j<=k[];j++)
for(int w=;w<=k[];w++)
if(i!=q[]||j!=q[]||w!=q[])
p[i+j+w]+=P;
for(int i=n;i>=;i--){
a[i]=P,b[i]=;
for(int j=;j<=k[]+k[]+k[];j++)
a[i]+=a[i+j]*p[j],b[i]+=p[j]*b[i+j];
}printf("%.15lf\n",b[]/(-a[]));
}return ;
}

【期望DP】[zoj3329]One Person Game的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. kma 2019CSP前刷题记录

    2019/10/25 \([LNOI2014]\ LCA\) \([Luogu\ P2774]\) 方格取数问题 \(Gauss\)消元板 \([JSOI2008]\)球形空间产生器 2019/10/ ...

  2. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  3. JVM内核-原理、诊断与优化学习笔记(四):GC算法与种类

    文章目录 GC的概念 GC算法 引用计数法 引用计数法的问题 标记清除 标记压缩 小问题 复制算法 复制算法的最大问题是:空间浪费 整合标记清理思想 -XX:+PrintGCDetails的输出 gc ...

  4. HDU1556-Color the ball-前缀和/线段树/树状数组

    N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的“小飞鸽"牌电动车从气球a开始到气球b依次给每个气球涂一次颜色.但 ...

  5. jpa现有接口方法说明 (转https://www.cnblogs.com/rulian/p/6557471.html)

    一.接口方法整理速查 下表针对于简单查询,即JpaRepository接口(继承了CrudRepository接口.PagingAndSortingRepository接口)中的可访问方法进行整理.( ...

  6. 2019 HDU 多校赛第二场 HDU 6598 Harmonious Army 构造最小割模型

    题意: 有n个士兵,你可以选择让它成为战士还是法师. 有m对关系,u和v 如果同时为战士那么你可以获得a的权值 如果同时为法师,你可以获得c的权值, 如果一个为战士一个是法师,你可以获得b的权值 问你 ...

  7. iphone11系统输入框的光标位置不正常

    本人的系统是11.3的是正常的,却发现测试机的11.1和11.2的光标位置在输入框的下边.百度一下,很多人有同样的问题,在此记录一下 解决办法一: //弹框弹出后执行如下代码 $('body').cs ...

  8. sql中取出字符串中数字

    select substring(reverse('0->星光'),PATINDEX('%[0-9]%',reverse('0->星光')),1)

  9. cacti ERROR: FILE NOT FOUND

    Cacti 版本: 0.8a 在安装好 cacti之后,进入Settings -> Paths, 而且里面的路径在系统中都存在的,在这里显示ERROR: FILE NOT FOUND 参考1的博 ...

  10. Last_SQL_Error: Error 'Can't drop database

    此文办法只用应急, 别的办法我还没想到,  文章是Copy来的 MySQL主从同步报错排错结果及修复过程之:Slave_SQL_Running: No 起因调查: 收到大量邮件报警想必事出有因,就问同 ...