题描:

有三个均匀的骰子,分别有k1,k2,k3个面,初始分数是0,
当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和,
当分数>n的时候结束。求需要掷骰子的次数的期望。

令f[i]为当前三个骰子点数和为i时掷骰子期望次数

则易有:(逆推)

$$f[i]=\sum({p[k]*f[i+k]})+f[0]*P_0+1$$

然而这是逆推...

咱并不知道$f[0]$的值

凉了

吗?

注意到求$f[i]$时跟它有关的所有f[k]中只有f[0]是未知的,那我们就把这玩意儿当做未知数

列方程:

令$f[i]=A_i*f[0]+B_i$(①),则有:

$$f[i+k]=A_{i+k}*f[0]+B_{i+k}$$

代入①式有:

$$f[i]=\sum[p[k]*(A_{i+k}*f[0]+B_{i+k})]+f[0]*P_0+1$$

(②)

(p[k]表示三个骰子掷出和为k时的概率)

变形得:

$$f[i]=[\sum(p[k]*A_{i+k})+P_0]*f[0]+\sum(p[k]*B_{i+k})+1$$

(③)

这样就能发现③式与①式的形式已经大致相同了.

综上:

$$A_i= \sum(p[k]*A_{i+k})+P_0$$

$$B_i=\sum(p[k]*B_{i+k})+1$$

令:$i=0$

有:

$$f[0]=A_0*f[0]+B_0$$

综上:$$f[0]=\frac{B_0}{1-A_0}$$

而f[0]就是我们最后要求的答案

所以我们只需要求a[]和b[]就可以啦

 #include<bits/stdc++.h>
#define writeln(x) write(x),puts("")
#define writep(x) write(x),putchar(' ')
using namespace std;
inline int read(){
int ans=,f=;char chr=getchar();
while(!isdigit(chr)){if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)){ans=(ans<<)+(ans<<)+chr-;chr=getchar();}
return ans*f;
}void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}const int M = ;
int k[M],q[M],n;
double P,p[M],a[M],b[M];
inline void Clear_All(){memset(a,,sizeof(a)),memset(b,,sizeof(b)),memset(p,,sizeof(p));}
int main(){
int T=read();
while(Clear_All(),T--){
n=read();
for(int i=;i<=;i++) k[i]=read();
for(int i=;i<=;i++) q[i]=read();
P=1.0/(k[]*k[]*k[]);
for(int i=;i<=k[];i++)
for(int j=;j<=k[];j++)
for(int w=;w<=k[];w++)
if(i!=q[]||j!=q[]||w!=q[])
p[i+j+w]+=P;
for(int i=n;i>=;i--){
a[i]=P,b[i]=;
for(int j=;j<=k[]+k[]+k[];j++)
a[i]+=a[i+j]*p[j],b[i]+=p[j]*b[i+j];
}printf("%.15lf\n",b[]/(-a[]));
}return ;
}

【期望DP】[zoj3329]One Person Game的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  5. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  6. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  7. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  8. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  9. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  10. uva11600 状压期望dp

    一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...

随机推荐

  1. Python入门 mac系统/linux系统 安装python (一)

    mac 系统 在命令行里,不会用命令行就别学编程了,自行查一下怎么用吧 brew install python 如果没有brew这个命令: 在mac终端下执行 /usr/bin/ruby -e &qu ...

  2. OSI七层网络模型分别是哪七层?各运行那些协议?

    本文摘自:https://blog.csdn.net/JeremyZJM/article/details/78184775 应用层 DHCP · DNS · FTP · Gopher · HTTP · ...

  3. 实现solr热词排行榜

    现在有业务场景,要求实现词库里面,最新,最热的词并显示,点击热词后可以进入相关信息的文章或者句子 热词的显示频率12小时更新一次. 实现思路: 实现步骤:

  4. python学习2—python3特性与各种运算符

    python学习2—python3特性与各种运算符 python3与python2相比具有的新特性 在python2中可以使用__future__模块调用python3的特性 print()函数必须带 ...

  5. python中的线程锁

    锁对象 原始锁是一个在锁定时不属于特定线程的同步基元组件.在Python中,它是能用的最低级的同步基元组件,由 _thread 扩展模块直接实现. 原始锁处于 "锁定" 或者 &q ...

  6. C++之赋值、比较、逻辑运算符

    赋值运算符 **作用:**用于将表达式的值赋给变量 赋值运算符包括以下几个符号: int main() { //赋值运算符 // = ; a = ; cout << "a = & ...

  7. java锁分析

    import java.util.concurrent.TimeUnit; class Phone//Phone.java ---> Phone.class Class.forName(); { ...

  8. Django ORM 之F、Q查询与事务

    返回ORM目录 Django ORM 内容目录 一.F.Q查询 二.事务 三.only与defer 一.F.Q查询 """ Product表中的数据: 1 橡皮 2 20 ...

  9. java多线程-AbstractQueuedSynchronizer

    大纲: AbstractQueuedSynchronizer简介 aqs基本结构 aqs应用-ReentrantLock.lock aqs应用-ReentrantLock.unlock aqs应用-S ...

  10. Odoo Javascript 参考

    本文介绍了odoo javascript框架.从代码行的角度来看,这个框架不是一个大的应用程序,但它是非常通用的,因为它基本上是一个将声明性接口描述转换为活动应用程序的机器,能够与数据库中的每个模型和 ...