import numpy as np
import matplotlib.pyplot as plt fig = plt.figure()
fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, right=0.975) plt.subplot(2,1,1)
plt.xticks([]), plt.yticks([]) plt.subplot(2,3,4)
plt.xticks([]), plt.yticks([]) plt.subplot(2,3,5)
plt.xticks([]), plt.yticks([]) plt.subplot(2,3,6)
plt.xticks([]), plt.yticks([]) # plt.savefig('../figures/multiplot_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 20
Z = np.ones(n)
Z[-1] *= 2 plt.axes([0.025, 0.025, 0.95, 0.95]) plt.pie(Z, explode=Z*.05, colors=['%f' % (i/float(n)) for i in range(n)],
wedgeprops={"linewidth": 1, "edgecolor": "black"})
plt.gca().set_aspect('equal')
plt.xticks([]), plt.yticks([]) # savefig('../figures/pie_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 256
X = np.linspace(-np.pi,np.pi,n,endpoint=True)
Y = np.sin(2*X) plt.axes([0.025,0.025,0.95,0.95]) plt.plot (X, Y+1, color='blue', alpha=1.00)
plt.fill_between(X, 1, Y+1, color='blue', alpha=.25) plt.plot (X, Y-1, color='blue', alpha=1.00)
plt.fill_between(X, -1, Y-1, (Y-1) > -1, color='blue', alpha=.25)
plt.fill_between(X, -1, Y-1, (Y-1) < -1, color='red', alpha=.25) plt.xlim(-np.pi,np.pi), plt.xticks([])
plt.ylim(-2.5,2.5), plt.yticks([])
# savefig('../figures/plot_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
ax.set_zlim(-2,2) # savefig('../figures/plot3d_ex.png',dpi=48)
plt.show()

from pylab import *
from mpl_toolkits.mplot3d import axes3d ax = gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contourf(X, Y, Z)
ax.clabel(cset, fontsize=9, inline=1) plt.xticks([]), plt.yticks([]),
ax.set_zticks([]) ax.text2D(-0.05, 1.05, " 3D plots \n\n",
horizontalalignment='left',
verticalalignment='top',
family='Lint McCree Intl BB',
size='x-large',
bbox=dict(facecolor='white', alpha=1.0, width=350,height=60),
transform = gca().transAxes) ax.text2D(-0.05, .975, " Plot 2D or 3D data",
horizontalalignment='left',
verticalalignment='top',
family='Lint McCree Intl BB',
size='medium',
transform = gca().transAxes) plt.show()

import numpy as np
import matplotlib.pyplot as plt ax = plt.axes([0.025,0.025,0.95,0.95], polar=True) N = 20
theta = np.arange(0.0, 2*np.pi, 2*np.pi/N)
radii = 10*np.random.rand(N)
width = np.pi/4*np.random.rand(N)
bars = plt.bar(theta, radii, width=width, bottom=0.0) for r,bar in zip(radii, bars):
bar.set_facecolor( plt.cm.jet(r/10.))
bar.set_alpha(0.5) ax.set_xticklabels([])
ax.set_yticklabels([])
# savefig('../figures/polar_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 8
X,Y = np.mgrid[0:n,0:n]
T = np.arctan2(Y-n/2.0, X-n/2.0)
R = 10+np.sqrt((Y-n/2.0)**2+(X-n/2.0)**2)
U,V = R*np.cos(T), R*np.sin(T) plt.axes([0.025,0.025,0.95,0.95])
plt.quiver(X,Y,U,V,R, alpha=.5)
plt.quiver(X,Y,U,V, edgecolor='k', facecolor='None', linewidth=.5) plt.xlim(-1,n), plt.xticks([])
plt.ylim(-1,n), plt.yticks([]) # savefig('../figures/quiver_ex.png',dpi=48)
plt.show()

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation # No toolbar
matplotlib.rcParams['toolbar'] = 'None' # New figure with white background
fig = plt.figure(figsize=(6,6), facecolor='white') # New axis over the whole figureand a 1:1 aspect ratio
# ax = fig.add_axes([0,0,1,1], frameon=False, aspect=1)
ax = fig.add_axes([0.005,0.005,0.990,0.990], frameon=True, aspect=1) # Number of ring
n = 50
size_min = 50
size_max = 50*50 # Ring position
P = np.random.uniform(0,1,(n,2)) # Ring colors
C = np.ones((n,4)) * (0,0,0,1) # Alpha color channel goes from 0 (transparent) to 1 (opaque)
C[:,3] = np.linspace(0,1,n) # Ring sizes
S = np.linspace(size_min, size_max, n) # Scatter plot
scat = ax.scatter(P[:,0], P[:,1], s=S, lw = 0.5,
edgecolors = C, facecolors='None') # Ensure limits are [0,1] and remove ticks
ax.set_xlim(0,1), ax.set_xticks([])
ax.set_ylim(0,1), ax.set_yticks([]) def update(frame):
global P, C, S # Every ring is made more transparent
C[:,3] = np.maximum(0, C[:,3] - 1.0/n) # Each ring is made larger
S += (size_max - size_min) / n # Reset ring specific ring (relative to frame number)
i = frame % 50
P[i] = np.random.uniform(0,1,2)
S[i] = size_min
C[i,3] = 1 # Update scatter object
scat.set_edgecolors(C)
scat.set_sizes(S)
scat.set_offsets(P)
return scat, animation = FuncAnimation(fig, update, interval=10)
# animation.save('../figures/rain.gif', writer='imagemagick', fps=30, dpi=72)
plt.show()

import numpy as np
import matplotlib.pyplot as plt # New figure with white background
fig = plt.figure(figsize=(6,6), facecolor='white') # New axis over the whole figureand a 1:1 aspect ratio
ax = fig.add_axes([0.005,0.005,.99,.99], frameon=True, aspect=1) # Number of ring
n = 50
size_min = 50
size_max = 50*50 # Ring position
P = np.random.uniform(0,1,(n,2)) # Ring colors
C = np.ones((n,4)) * (0,0,0,1) # Alpha color channel goes from 0 (transparent) to 1 (opaque)
C[:,3] = np.linspace(0,1,n) # Ring sizes
S = np.linspace(size_min, size_max, n) # Scatter plot
scat = ax.scatter(P[:,0], P[:,1], s=S, lw = 0.5,
edgecolors = C, facecolors='None') # Ensure limits are [0,1] and remove ticks
ax.set_xlim(0,1), ax.set_xticks([])
ax.set_ylim(0,1), ax.set_yticks([]) # plt.savefig("../figures/rain-static.png",dpi=72)
plt.show()

import numpy as np
import matplotlib.pyplot as plt n = 1024
X = np.random.normal(0,1,n)
Y = np.random.normal(0,1,n)
T = np.arctan2(Y,X) plt.axes([0.025,0.025,0.95,0.95])
plt.scatter(X,Y, s=75, c=T, alpha=.5) plt.xlim(-1.5,1.5), plt.xticks([])
plt.ylim(-1.5,1.5), plt.yticks([])
# savefig('../figures/scatter_ex.png',dpi=48)
plt.show()

from pylab import *

size = 256,16
dpi = 72.0
figsize= size[0]/float(dpi),size[1]/float(dpi)
fig = figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
axes([0,0,1,1], frameon=False) plot(np.arange(4), np.ones(4), color="blue", linewidth=8, solid_capstyle = 'butt') plot(5+np.arange(4), np.ones(4), color="blue", linewidth=8, solid_capstyle = 'round') plot(10+np.arange(4), np.ones(4), color="blue", linewidth=8, solid_capstyle = 'projecting') xlim(0,14)
xticks([]),yticks([])
show()

from pylab import *

size = 256,16
dpi = 72.0
figsize= size[0]/float(dpi),size[1]/float(dpi)
fig = figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
axes([0,0,1,1], frameon=False) plot(np.arange(3), [0,1,0], color="blue", linewidth=8, solid_joinstyle = 'miter')
plot(4+np.arange(3), [0,1,0], color="blue", linewidth=8, solid_joinstyle = 'bevel')
plot(8+np.arange(3), [0,1,0], color="blue", linewidth=8, solid_joinstyle = 'round') xlim(0,12), ylim(-1,2)
xticks([]),yticks([])
show()

from pylab import *

subplot(2,2,1)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,1)',ha='center',va='center',size=20,alpha=.5) subplot(2,2,2)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,2)',ha='center',va='center',size=20,alpha=.5) subplot(2,2,3)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,3)',ha='center',va='center',size=20,alpha=.5) subplot(2,2,4)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,4)',ha='center',va='center',size=20,alpha=.5) # savefig('../figures/subplot-grid.png', dpi=64)
show()

from pylab import *

subplot(2,1,1)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,1,1)',ha='center',va='center',size=24,alpha=.5) subplot(2,1,2)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,1,2)',ha='center',va='center',size=24,alpha=.5) # plt.savefig('../figures/subplot-horizontal.png', dpi=64)
show()

from pylab import *

subplot(1,2,1)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,1)',ha='center',va='center',size=24,alpha=.5) subplot(1,2,2)
xticks([]), yticks([])
text(0.5,0.5, 'subplot(2,2,2)',ha='center',va='center',size=24,alpha=.5) show()

import numpy as np
import matplotlib.pyplot as plt eqs = []
eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$"))
eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$"))
eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$"))
eqs.append((r"$E = mc^2 = \sqrt{{m_0}^2c^4 + p^2c^2}$"))
eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$")) plt.axes([0.025,0.025,0.95,0.95]) for i in range(24):
index = np.random.randint(0,len(eqs))
eq = eqs[index]
size = np.random.uniform(12,32)
x,y = np.random.uniform(0,1,2)
alpha = np.random.uniform(0.25,.75)
plt.text(x, y, eq, ha='center', va='center', color="#11557c", alpha=alpha,
transform=plt.gca().transAxes, fontsize=size, clip_on=True) plt.xticks([]), plt.yticks([])
# savefig('../figures/text_ex.png',dpi=48)
plt.show()

import matplotlib
#matplotlib.use('Agg')
from pylab import * def tickline(): size = 512,32
dpi = 72.0
figsize= size[0]/float(dpi),size[1]/float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0) ax = axes([0.05, 0, 0.9, 1], frameon=False)
xlim(0,10), ylim(-1,1), yticks([])
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_minor_locator(MultipleLocator(0.1))
ax.plot(np.arange(11), np.zeros(11), color='none')
return ax ax = tickline()
ax.xaxis.set_major_locator(NullLocator()) ax = tickline()
ax.xaxis.set_major_locator(MultipleLocator(1.0)) ax = tickline()
ax.xaxis.set_major_locator(FixedLocator([0,2,8,9,10])) ax = tickline()
ax.xaxis.set_major_locator(IndexLocator(3,1)) ax = tickline()
ax.xaxis.set_major_locator(LinearLocator(5)) ax = tickline()
ax.xaxis.set_major_locator(LogLocator(2,[1.0])) ax = tickline()
ax.xaxis.set_major_locator(AutoLocator())

吴裕雄--天生自然Python Matplotlib库学习笔记:matplotlib绘图(2)的更多相关文章

  1. 吴裕雄--天生自然python Google深度学习框架:Tensorflow实现迁移学习

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  2. 吴裕雄--天生自然python Google深度学习框架:经典卷积神经网络模型

    import tensorflow as tf INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABEL ...

  3. 吴裕雄--天生自然python Google深度学习框架:图像识别与卷积神经网络

  4. 吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  5. 吴裕雄--天生自然python Google深度学习框架:深度学习与深层神经网络

  6. 吴裕雄--天生自然python Google深度学习框架:TensorFlow实现神经网络

    http://playground.tensorflow.org/

  7. 吴裕雄--天生自然python Google深度学习框架:Tensorflow基础应用

    import tensorflow as tf a = tf.constant([1.0, 2.0], name="a") b = tf.constant([2.0, 3.0], ...

  8. 吴裕雄--天生自然python Google深度学习框架:人工智能、深度学习与机器学习相互关系介绍

  9. 吴裕雄--天生自然 R语言开发学习:中级绘图(续二)

    #------------------------------------------------------------------------------------# # R in Action ...

  10. 吴裕雄--天生自然 R语言开发学习:中级绘图(续一)

    #------------------------------------------------------------------------------------# # R in Action ...

随机推荐

  1. cookie不支持中文,必须转码后存储,否则会乱码

    cookie不支持中文,必须转码后存储,否则会乱码 Cookie ck = new Cookie("username", URLEncoder.encode(name, " ...

  2. AC3 bit allocation

    1.bit allocation overview bit allocation通过分析audio 信号的频谱envelop,使用masking effect来确定使用多少bit来表示频率系数的man ...

  3. 每天进步一点点------创建Microblaze软核(一)

    在使用FPGA时,有时会用到它做为主控芯片.对于习惯于单片机及C语言开发的人,使用FPGA做主控芯片,首先还是想到它的嵌入式软核功能.如果能够基于Microblze软核进行C语言程序的开发,相对于使用 ...

  4. xml配置文件中对于Shiro 权限管理filterChainDefinitions过滤器配置

    博客转载:http://blog.csdn.net/userrefister/article/details/47807075 /** * Shiro-1.2.2内置的FilterChain * @s ...

  5. Spring Boot 2.x基础教程:找回启动日志中的请求路径列表

    如果您看过之前的Spring Boot 1.x教程,或者自己原本就对Spring Boot有一些经验,或者对Spring MVC很熟悉.那么对于Spring构建的Web应用在启动的时候,都会输出当前应 ...

  6. Bugku-CTF之login3(SKCTF)(基于布尔的SQL盲注)

    Day41 login3(SKCTF)

  7. Spring Boot 升级框架版本 Spring 5.2 Invalid argument syntax org.springframework.core.env.Simple CommandLineArgs

    Invalid argument syntax org.springframework.core.env.Simple CommandLineArgs Parser.parse 具体问题应该是启动的c ...

  8. 概率dp poj 2151

    题意: 这道题目的意思很简单,有t个ACM队,m个题目,题目给出了每个队对每个题目做出的概率大小(0到1之间,包含0和1),要求每个队至少做出一道题(签到题),同时,要求获胜队必须至少能够做出n道题( ...

  9. hibernate和mybatis出现配置文件xml的文件报错Multiple annotations found at this line(转)

    hibernate中的xml配置文件Multiple annotations found at this line,出现这个红叉报错,直接是把 <?xml version="1.0&q ...

  10. Spring AOP编程(一)-AOP介绍

    1. AOP介绍 l         在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术 ...