[HAOI2011] 向量 - 裴蜀定理
给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。
Solution
等价于以下操作集合
\(x \pm 2a\)
\(y \pm 2a\)
\(x \pm 2b\)
\(y \pm 2b\)
\(x +a, y+b\)
\(x+b,y+a\)
设 \(A=2a,B=2b,d=(A,B)\)
则方程
\(iA+jB=x\)
和
\(iA+jB=y\) 一定都有解
根据裴蜀定理
\((a,b)=d \rightarrow d|ax+by \ \forall x,y\)
不妨先将坐标对 \(d\) 取模,那么 \(i,j\) 取值只能为 \(0,1\),都检验一遍即可
#include <bits/stdc++.h>
using namespace std;
int a,b,x,y;
int main() {
int t;
cin>>t;
while(t--) {
cin>>a>>b>>x>>y;
int d=__gcd(a,b)*2;
a%=d;b%=d;x%=d;y%=d;
if((x%d==0 && y%d==0) ||
((x+a)%d==0 && (y+b)%d==0) ||
((x+b)%d==0 && (y+a)%d==0) ||
((x+a+b)%d==0 && (y+b+a)%d==0))
puts("Y");
else puts("N");
}
}
[HAOI2011] 向量 - 裴蜀定理的更多相关文章
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- BZOJ 2299 向量(裴蜀定理)
题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- [BZOJ1441&BZOJ2257&BZOJ2299]裴蜀定理
裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给 ...
- 【BZOJ-1441】Min 裴蜀定理 + 最大公约数
1441: Min Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 471 Solved: 314[Submit][Status][Discuss] De ...
- BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...
- 【BZOJ】1441: Min(裴蜀定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
随机推荐
- Mac-MacOS降级(Mac系统降级,系统回退)
前言 最近把macOS更新到了 macOS Catalina,使用了一段时间后,结合自己的使用环境和体验,感觉 Catalina 不太好用,就想把系统回退到 macOS Mojave,但是平时几乎不用 ...
- 《ADCrowdNet》密集人群检测论文笔记
背景 为了解决高密度的计数问题.(PS:就是attention机制的应用) 网络 整体网络结构图 attention部分的网络AMG 密度图预测网络 DConv代表可变形卷积,下图是常规卷积(左)与可 ...
- C# 通过反射检查属性是否包含特定字符串
public static bool StringFilter(this object model,string filterStr) { if (string.IsNullOrEmpty(filte ...
- C++ Primer 抄书笔记(二)——变量和基本类型(上)
一.基本内置类型 base build-in type[算数类型/类型转换/字面值常量] 基本内置类型(算数类型arithmetic type(整型integral type(字符,布尔bool),浮 ...
- Resnet——深度残差网络(一)
我们都知道随着神经网络深度的加深,训练过程中会很容易产生误差的积累,从而出现梯度爆炸和梯度消散的问题,这是由于随着网络层数的增多,在网络中反向传播的梯度会随着连乘变得不稳定(特别大或特别小),出现最多 ...
- Java实体对象为什么要实现Serializable接口?
前言 Java实体对象为什么一定要实现Serializable接口呢?在学JavaSE的时候有些实体对象不实现Serializable不是也没什么影响吗? 最近在学习mybatis的时候发现,老师写的 ...
- Git 尝试
1,下载Git 2,安装GIt 3,config : git config --global user.name "mxb" git config --global user.em ...
- MySQL概述及入门(三)
MySql概述及入门(三) MySQL性能优化 主要优化安全和性能方面 安全方面 : 数据可持续性 性能方面 : 数据的高性能访问 性能优化——慢查询 在MySQL数据库中有一个慢查询日志功能,去获取 ...
- 剑指offer-面试题56_1-数组中只出现一次的两个数字-位运算
/* 题目: 求数组A中只出现一次的数字,该数组中有2个数字a.b仅出现一次,其余均出现两次 */ /* 思路: 两个相同的数字异或为0. 遍历数组,得到数组中各数字异或后的结果x,结果x=a^b. ...
- 由于找不到opencv_world320d.dll,无法继续执行代码。解决方案
将 opencv 安装路径 目录\opencv\build\x64\vc14\bin 中 3 个后缀是.dll 的应用程序扩展复制到 C:\Windows\System32 中 完美解决!