Z变换

由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换。

定义

已知序列的\(DTFT\)为
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
当序列\(x[n]\)不满足收敛条件时,我们让\(x[n]\)乘以\(r^{-n}\)使它收敛
\[
\sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-jwn}
\]
令\(z=re^{jw}\)得到
\[
X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}
\]
对于所有的\(z\)上式不一定收敛,所以\(Z\)变换是有其收敛域,所以在对一个信号进行\(Z\)变换时,一定要加上它的收敛域,因为对于一些不同的信号,它们的\(Z\)变换相同,但是它们的收敛域不同。仅仅由\(Z\)变换的表达式并不能完全的确定原信号,要加上它的收敛域才能完全的确定原信号。

例:求序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换。
解:
\[
X(z)=\sum_{n=0}^{\infty}\alpha^nz^{-n}=\frac{1}{1-\alpha z^{-1}}
\]
要使上式收敛,则必须满足\(\vert\alpha z^{-1}\vert<1\),即收敛域为\(\vert z\vert>\vert \alpha\vert\)。
所以序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换为
\[
X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert>\vert \alpha\vert
\]

例:求序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换。
解:
\[
X(z)=\sum_{n=-\infty}^{-1}-\alpha^nz^{-n}=-\sum_{m=1}^{\infty}(\alpha^{-1}z)^{m}=-\frac{\alpha^{-1}z}{1-\alpha^{-1}z}=\frac{1}{1-\alpha z^{-1}}
\]
要使上式收敛,则需要满足\(\vert\alpha^{-1}z\vert<1\),即收敛域为\(\vert z\vert < \vert \alpha \vert\)
所以序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换为
\[
X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert < \vert \alpha \vert
\]

由上面两例可知,序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换的表达式与序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换的表达式是一样的,但是它们的收敛域是完全不一样的,如果只给出其\(Z\)变换的表达式,是不能判断其原信号是什么的。

\(Z\)变换的性质

设序列\(x[n]\)的\(Z\)变换为\(X(z)\),其收敛域为\(R_{x-}<\vert z\vert <R_{x+}\),序列\(w[n]\)的\(Z\)变换为\(W(z)\),其收敛域为\(R_{w-}<\vert z\vert <R_{w+}\)。

线性性质

设\(y[n]=\alpha x[n]+\beta w[n]\),则其\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}(\alpha x[n]+\beta w[n])z^{-n}\\
&=\alpha\sum_{n=-\infty}^{\infty}x[n]z^{-n}+\beta\sum_{n=-\infty}^{\infty}w[n]z^{-n}\\
&=\alpha X(z)+\beta W(z)
\end{aligned}
\]

其收敛域为\[max\{R_{x-},R_{w-}\}<\vert z\vert <min\{R_{x+},R_{w+}\}\]

时移性质

序列\(y[n]=x[n-n_0]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\\
&\xrightarrow{m=n-n_0}z^{-n_0}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\\
&=z^{-n_0}X(z)
\end{aligned}
\]
除了其收敛域可能包含\(0\)或者\(\infty\),与原收敛域相同。

乘以指数序列

序列\(y[n]=\alpha^nx[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}\alpha^nx[n]z^{-n}\\
&=\sum_{n=-\infty}^{\infty}x[n](z\alpha^{-1})^{-n}\\
&=X(\frac{z}{\alpha})
\end{aligned}
\]
其收敛域为\(\vert \alpha \vert R_{x-}< \vert z\vert < \vert \alpha \vert R_{x+}\)

反褶

序列\(y[n]=x[-n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x[-n]z^{-n}\\
&\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m](\frac{1}{z})^{-n}\\
&=X(\frac{1}{z})
\end{aligned}
\]
其收敛域为\(\cfrac{1}{R_{x+}}<\vert z\vert < \cfrac{1}{R_{x-}}\)

共轭

序列\(y[n]=x^{*}[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x^{*}[n]z^{-n}\\
&=(\sum_{n=-\infty}^{\infty}x[n](z^{*})^{-n})^{*}\\
&=X^{*}(z^{*})
\end{aligned}
\]
其收敛域未发生改变,因为\(\vert z\vert = \vert z^{*}\vert\)

时域微分

由于
\[
X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}
\]
所以
\[
\frac{dX(z)}{dz}=-\sum_{n=-\infty}^{\infty}nx[n]z^{-n-1}\Rightarrow-z\frac{dX(z)}{dz}=\sum_{n=-\infty}^{\infty}nx[n]z^{-n}
\]
所以序列\(y[n]=nx[n]\)的\(Z\)变换为
\[
Y(z)=-z\frac{dX(z)}{dz}
\]
其收敛域可能去掉\(0\)或者\(\infty\),其余不变。

卷积

序列\(y[n]=x[n]*w[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]w[n-m]z^{-n}\\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}w[n-m]z^{-n}\\
&\xrightarrow{l=n-m}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\sum_{l=-\infty}^{\infty}w[l]z^{-l}\\
&=X(z)Y(z)
\end{aligned}
\]
其收敛域为
\[
max\{R_{x-},R_{w-}\}<\vert z\vert <min\{R_{x+},R_{w+}\}
\]
有时\(X(z)\)与\(W(z)\)的零极点可能会互相抵消,所以收敛域可能会比这个大。

16 Z变换的更多相关文章

  1. z 变换

    1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...

  2. z变换

    ---恢复内容开始--- z变换作用很大 将离散信号从时间域转到频率域 网址 ---恢复内容结束--- z变换作用很大 将离散信号从时间域转到频率域 网址 http://stackoverflow.c ...

  3. 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换

    傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络       傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...

  4. 常用函数的DTFT变换对和z变换对

    直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对

  5. 【转】傅里叶变换 拉普拉斯变 z变换 DFT DCT意义

    傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). ...

  6. windows phone (16) UI变换 下

    原文:windows phone (16) UI变换 下 上一篇中说到四个变换类,都是比较简单的,这里要说到四个变换类,分别为: MatrixTransfrom矩阵变换,一句标准矩阵表示的变换 Tra ...

  7. [离散时间信号处理学习笔记] 10. z变换与LTI系统

    我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displays ...

  8. [离散时间信号处理学习笔记] 9. z变换性质

    z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z ...

  9. [离散时间信号处理学习笔记] 7. z变换

    z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\ome ...

随机推荐

  1. vga显示原理即相关计算

    行扫描周期:完成一行扫描所需时间: 行时序时间(a,b,c,d,e):完成一个像素点显示得时间 场扫描周期:完成所有行(一帧扫描所需时间) 场时序时间(o,p,q,r,s):完成一行显示得时间,一个完 ...

  2. Docker on startup: “No activity detected on VM, aborting”

    windows下安装的docker,切换到linux,一直处于重启中,最后报No activity detected on VM, aborting错误 上网百度一下这个错误,基本上没人遇到过,最后在 ...

  3. leetcode 72.编辑距离(dp)

    链接:https://leetcode-cn.com/problems/edit-distance/submissions/ 设dp[i][j]表示串s1前i个字符变换成串s2前j个字符所需要的最小操 ...

  4. appium---切换webview时报错

    在上一篇中简单介绍了如何查看webview和切换到webview的方法,可能第一次切换webview的时候会报错“Error: session not created exception: Chrom ...

  5. POJ2909_Goldbach's Conjecture(线性欧拉筛)

    Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one p ...

  6. HADOOP_SECURE_DN_USER has been replaced by HDFS_DATANODE_SECURE_USER

    这个问题可能是我第一个遇到吧,hadoop启动时WARNING: HADOOP_SECURE_DN_USER has been replaced by HDFS_DATANODE_SECURE_USE ...

  7. 其他 - 02. poolmon 安装

    1. 概述 遇到 win10 的内存泄露 32G 内存都能给吃光 2. 思路 rammap 对整体内存做一个诊断 主要是内存分配 用途 状态 poolmon 确认内存的用途 比 rammap 更精确 ...

  8. Python 树莓派 引脚

    #!/usr/bin/python3 import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setup(18, GPIO.OU ...

  9. blog主题——黑夜

    blog主题,存储一下 /* Author: Io_oTI*/ /*Public*/ * { margin: 0; padding: 0; box-sizing: border-box; trans ...

  10. 从游击队到正规军(三):基于Go的马蜂窝旅游网分布式IM系统技术实践

    本文由马蜂窝技术团队电商交易基础平台研发工程师"Anti Walker"原创分享. 一.引言 即时通讯(IM)功能对于电商平台来说非常重要,特别是旅游电商. 从商品复杂性来看,一个 ...