16 Z变换
Z变换
由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换。
定义
已知序列的\(DTFT\)为
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
当序列\(x[n]\)不满足收敛条件时,我们让\(x[n]\)乘以\(r^{-n}\)使它收敛
\[
\sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-jwn}
\]
令\(z=re^{jw}\)得到
\[
X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}
\]
对于所有的\(z\)上式不一定收敛,所以\(Z\)变换是有其收敛域,所以在对一个信号进行\(Z\)变换时,一定要加上它的收敛域,因为对于一些不同的信号,它们的\(Z\)变换相同,但是它们的收敛域不同。仅仅由\(Z\)变换的表达式并不能完全的确定原信号,要加上它的收敛域才能完全的确定原信号。
例:求序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换。
解:
\[
X(z)=\sum_{n=0}^{\infty}\alpha^nz^{-n}=\frac{1}{1-\alpha z^{-1}}
\]
要使上式收敛,则必须满足\(\vert\alpha z^{-1}\vert<1\),即收敛域为\(\vert z\vert>\vert \alpha\vert\)。
所以序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换为
\[
X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert>\vert \alpha\vert
\]
例:求序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换。
解:
\[
X(z)=\sum_{n=-\infty}^{-1}-\alpha^nz^{-n}=-\sum_{m=1}^{\infty}(\alpha^{-1}z)^{m}=-\frac{\alpha^{-1}z}{1-\alpha^{-1}z}=\frac{1}{1-\alpha z^{-1}}
\]
要使上式收敛,则需要满足\(\vert\alpha^{-1}z\vert<1\),即收敛域为\(\vert z\vert < \vert \alpha \vert\)
所以序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换为
\[
X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert < \vert \alpha \vert
\]
由上面两例可知,序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换的表达式与序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换的表达式是一样的,但是它们的收敛域是完全不一样的,如果只给出其\(Z\)变换的表达式,是不能判断其原信号是什么的。
\(Z\)变换的性质
设序列\(x[n]\)的\(Z\)变换为\(X(z)\),其收敛域为\(R_{x-}<\vert z\vert <R_{x+}\),序列\(w[n]\)的\(Z\)变换为\(W(z)\),其收敛域为\(R_{w-}<\vert z\vert <R_{w+}\)。
线性性质
设\(y[n]=\alpha x[n]+\beta w[n]\),则其\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}(\alpha x[n]+\beta w[n])z^{-n}\\
&=\alpha\sum_{n=-\infty}^{\infty}x[n]z^{-n}+\beta\sum_{n=-\infty}^{\infty}w[n]z^{-n}\\
&=\alpha X(z)+\beta W(z)
\end{aligned}
\]
其收敛域为\[max\{R_{x-},R_{w-}\}<\vert z\vert <min\{R_{x+},R_{w+}\}\]
时移性质
序列\(y[n]=x[n-n_0]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\\
&\xrightarrow{m=n-n_0}z^{-n_0}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\\
&=z^{-n_0}X(z)
\end{aligned}
\]
除了其收敛域可能包含\(0\)或者\(\infty\),与原收敛域相同。
乘以指数序列
序列\(y[n]=\alpha^nx[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}\alpha^nx[n]z^{-n}\\
&=\sum_{n=-\infty}^{\infty}x[n](z\alpha^{-1})^{-n}\\
&=X(\frac{z}{\alpha})
\end{aligned}
\]
其收敛域为\(\vert \alpha \vert R_{x-}< \vert z\vert < \vert \alpha \vert R_{x+}\)
反褶
序列\(y[n]=x[-n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x[-n]z^{-n}\\
&\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m](\frac{1}{z})^{-n}\\
&=X(\frac{1}{z})
\end{aligned}
\]
其收敛域为\(\cfrac{1}{R_{x+}}<\vert z\vert < \cfrac{1}{R_{x-}}\)
共轭
序列\(y[n]=x^{*}[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x^{*}[n]z^{-n}\\
&=(\sum_{n=-\infty}^{\infty}x[n](z^{*})^{-n})^{*}\\
&=X^{*}(z^{*})
\end{aligned}
\]
其收敛域未发生改变,因为\(\vert z\vert = \vert z^{*}\vert\)
时域微分
由于
\[
X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}
\]
所以
\[
\frac{dX(z)}{dz}=-\sum_{n=-\infty}^{\infty}nx[n]z^{-n-1}\Rightarrow-z\frac{dX(z)}{dz}=\sum_{n=-\infty}^{\infty}nx[n]z^{-n}
\]
所以序列\(y[n]=nx[n]\)的\(Z\)变换为
\[
Y(z)=-z\frac{dX(z)}{dz}
\]
其收敛域可能去掉\(0\)或者\(\infty\),其余不变。
卷积
序列\(y[n]=x[n]*w[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]w[n-m]z^{-n}\\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}w[n-m]z^{-n}\\
&\xrightarrow{l=n-m}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\sum_{l=-\infty}^{\infty}w[l]z^{-l}\\
&=X(z)Y(z)
\end{aligned}
\]
其收敛域为
\[
max\{R_{x-},R_{w-}\}<\vert z\vert <min\{R_{x+},R_{w+}\}
\]
有时\(X(z)\)与\(W(z)\)的零极点可能会互相抵消,所以收敛域可能会比这个大。
16 Z变换的更多相关文章
- z 变换
1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...
- z变换
---恢复内容开始--- z变换作用很大 将离散信号从时间域转到频率域 网址 ---恢复内容结束--- z变换作用很大 将离散信号从时间域转到频率域 网址 http://stackoverflow.c ...
- 数字信号处理--Z变换,傅里叶变换,拉普拉斯变换
傅立叶变换.拉普拉斯变换.Z变换最全攻略 作者:时间:2015-07-19来源:网络 傅立叶变换.拉普拉斯变换.Z变换的联系?他们的本质和区别是什么?为什么要进行这些变换.研究的都是什么? ...
- 常用函数的DTFT变换对和z变换对
直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对
- 【转】傅里叶变换 拉普拉斯变 z变换 DFT DCT意义
傅里叶变换在物理学.数论.组合数学.信号处理.概率论.统计学.密码学.声学.光学.海洋学.结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量). ...
- windows phone (16) UI变换 下
原文:windows phone (16) UI变换 下 上一篇中说到四个变换类,都是比较简单的,这里要说到四个变换类,分别为: MatrixTransfrom矩阵变换,一句标准矩阵表示的变换 Tra ...
- [离散时间信号处理学习笔记] 10. z变换与LTI系统
我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displays ...
- [离散时间信号处理学习笔记] 9. z变换性质
z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z ...
- [离散时间信号处理学习笔记] 7. z变换
z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\ome ...
随机推荐
- python面试的100题(4)
4.打乱一个排好序的list对象alist? import random alist = [1,2,3,4,5] random.shuffle(alist) print(alist) 结果为:[2, ...
- ZooKeeper Distributed lock
https://segmentfault.com/a/1190000016351095 http://www.dengshenyu.com/java/%E5%88%86%E5%B8%83%E5%BC% ...
- 1.Java多线程之wait和notify
1.首先我们来从概念上理解一下这两个方法: (1)obj.wait(),当obj对象调用wait方法时,这个方法会让当前执行了这条语句的线程处于等待状态(或者说阻塞状态),并释放调用wait方法的对象 ...
- redis5.0.7安装及配置集群
1.安装环境linux系统,时间2020年2月 2.官网下载https://redis.io/ 3.解压 tar -zxvf redis-5.0.7.tar.gz 4.配置文件 //创建etc文件夹, ...
- FLV文件格式分析(附源码)
FLV文件主要由两部分组成:Header和Body. 1. Header header部分记录了flv的类型.版本等信息,是flv的开头,一般都差不多,占9bytes.具体格式如下: 文件类型 3 b ...
- vue工程 使用滚动组件 vue2-better-scroll 实现上拉加载 下拉刷新
vue2-better-scroll 关于具体安装&使用过程 请移步api文档 已经很详细了 而且超清晰明了. https://cnpmjs.org/package/vue2-better-s ...
- numpy rand函数的应用
以后使用rand(), randint()等函数. 随机浮点类型数值(均匀分布) numpy.random.rand() 产生[0,1)内的浮点型随机数 numpy.random.rand(value ...
- code ELIFECYCLE 报错处理
npm ERR! code ELIFECYCLEnpm ERR! errno 1npm ERR! m-kbs-vip@1.2.12 toserver: `tua -p toserver`npm ERR ...
- CSS学习(1)简介
什么是 CSS? CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中,是为了解决内容与 ...
- 每天进步一点点------H.264学习 (一)
分三个阶段学习1.第一个阶段: 学习H.264,首先要把最基本最必要的资料拿在手里.这些资料包括:标准文档+测试模型+经典文章,在本FTP中能找到.首先看 <H.264_MPEG-4 Part ...