题意:

给你n对数,求一个数,可以让他整除每一对数的其中一个

思路:

枚举第一对数的质因数,然后暴力

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 2e7+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); inline int read(){
int num;
char ch;
while((ch=getchar())<'' || ch>'');
num=ch-'';
while((ch=getchar())>='' && ch<=''){
num=num*+ch-'';
}
return num;
}
int c = ;
int p[maxn];
void d(int x){
for(int i=;1ll*i*i<=x;i++)if(x%i==){
p[c++]=i;
while(x%i==)x/=i;
}
if(x>)p[c++]=x;
}
ll gcd(ll a, ll b){
return b == ? a : gcd(b, a % b);
}
PLL pa[ + ];
bool cmp(PLL a, PLL b){
return max(a.fst, a.sc) < max(b.fst, b.sc);
}
int main() {
int n;
scanf("%d", &n); for(int i = ; i < n; i++){
scanf("%I64d %I64d", &pa[i].fst, &pa[i].sc);
}
//sort(pa, pa+n, cmp);
d(pa[].fst);
d(pa[].sc);
if(n==){
printf("%I64d", pa[].fst);
return ;
}
for(int i = ; i < c; i++){
int flg = ;
for(int j = ; j < n && flg; j++){
if(pa[j].fst%p[i]!= && pa[j].sc%p[i]!=) flg = ; }
if(flg){
printf("%d", p[i]);
return ;
}
}
printf("-1");
return ;
}

codeforces 1025B Weakened Common Divisor(质因数分解)的更多相关文章

  1. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  2. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  3. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  4. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  5. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  6. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  7. HDU - 1019 - Least Common Multiple - 质因数分解

    http://acm.hdu.edu.cn/showproblem.php?pid=1019 LCM即各数各质因数的最大值,搞个map乱弄一下就可以了. #include<bits/stdc++ ...

  8. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  9. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

随机推荐

  1. Spark学习笔记(一)——基础概述

    本篇笔记主要说一下Spark到底是个什么东西,了解一下它的基本组成部分,了解一下基本的概念,为之后的学习做铺垫.过于细节的东西并不深究.在实际的操作过程中,才能够更加深刻的理解其内涵. 1.什么是Sp ...

  2. wepy怎么在生命周期中调用methods方法

    很简单: 比如在 onLoad () { imgRemove(e) {         this.methods.onRemove(e)     } } 在methods中就可以直接调用属于它的方法, ...

  3. 初识Activiti工作流

    一.背景介绍 公司最近接了一个监狱AB门系统的项目,在对项目进行调研时,发现客户的关注点主要是在AB门流程这块,项目大部分功能都是审批流程和单据流动状态等.而之前公司的项目关于流程主要都是在表中设置状 ...

  4. ODBC连接时报错不可识别的数据库格式

    报这个错误是因为Acess的版本不同. 2003版本的Acess的数据连接字符串: string dataBasePath = @"C:/Users/user/Documents/Test. ...

  5. 七牛云 融合CDN测试域名 -> 融合CDN加速域名

    七牛云 融合CDN测试域名 -> 融合CDN加速域名 本篇主要讲解 如何将七牛云融合CDN测试域名 切换到自定义的加速域名上去,为什么会写这篇是因为我收到了一封 [七牛云]测试域名回收通知的邮件 ...

  6. 使用vscode运行python出现中文乱码的解决方法

    前提:自己安装了code runner的插件 快捷键Ctrl+Shift+P,打开设置Open Settings (JSON):

  7. UVA540 Team Queue——题解 by hyl天梦

    UVA540 Team Queue 题解 题目描述:题目原题 https://vjudge.net/problem/UVA-540 Queues and Priority Queues are dat ...

  8. [bzoj3527] [洛谷P3338] [Zjoi2014]力

    Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...

  9. 嵩天老师python网课爬虫实例1的问题和解决方法

    一,AttributeError: 'NoneType' object has no attribute 'children', 网页'tbody'没有子类 很明显,报错的意思是说tbody下面没有c ...

  10. 16、python面对对象之类和继承

    前言:本文主要介绍python面对对象中的类和继承,包括类方法.静态方法.只读属性.继承等. 一.类方法 1.类方法定义 使用装饰器@classmethod装饰,且第一个参数必须是当前类对象,该参数名 ...