题意:

给你n对数,求一个数,可以让他整除每一对数的其中一个

思路:

枚举第一对数的质因数,然后暴力

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 2e7+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); inline int read(){
int num;
char ch;
while((ch=getchar())<'' || ch>'');
num=ch-'';
while((ch=getchar())>='' && ch<=''){
num=num*+ch-'';
}
return num;
}
int c = ;
int p[maxn];
void d(int x){
for(int i=;1ll*i*i<=x;i++)if(x%i==){
p[c++]=i;
while(x%i==)x/=i;
}
if(x>)p[c++]=x;
}
ll gcd(ll a, ll b){
return b == ? a : gcd(b, a % b);
}
PLL pa[ + ];
bool cmp(PLL a, PLL b){
return max(a.fst, a.sc) < max(b.fst, b.sc);
}
int main() {
int n;
scanf("%d", &n); for(int i = ; i < n; i++){
scanf("%I64d %I64d", &pa[i].fst, &pa[i].sc);
}
//sort(pa, pa+n, cmp);
d(pa[].fst);
d(pa[].sc);
if(n==){
printf("%I64d", pa[].fst);
return ;
}
for(int i = ; i < c; i++){
int flg = ;
for(int j = ; j < n && flg; j++){
if(pa[j].fst%p[i]!= && pa[j].sc%p[i]!=) flg = ; }
if(flg){
printf("%d", p[i]);
return ;
}
}
printf("-1");
return ;
}

codeforces 1025B Weakened Common Divisor(质因数分解)的更多相关文章

  1. CodeForces - 1025B Weakened Common Divisor

    http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...

  2. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  3. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  4. CF #505 B Weakened Common Divisor(数论)题解

    题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...

  5. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...

  6. 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor

    [链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...

  7. HDU - 1019 - Least Common Multiple - 质因数分解

    http://acm.hdu.edu.cn/showproblem.php?pid=1019 LCM即各数各质因数的最大值,搞个map乱弄一下就可以了. #include<bits/stdc++ ...

  8. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  9. CF1025B Weakened Common Divisor

    思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...

随机推荐

  1. HashMap,HashTable 区别,实现原理。

    HashMap是HashTable 的轻量级,非线程安全的,都是实现了map接口 区别:hashmap 允许空键值对的存在,非线程安全,效率高于hashtable,因为hashtable 是synch ...

  2. Spring MVC系列之模型绑定(SpringBoot)(七)

    前言 上一节我们在SpringBoot中启用了Spring MVC最终输出了HelloWorld,本节我们来讲讲Spring MVC中的模型绑定,这个名称来源于.NET或.NET Core,不知是否恰 ...

  3. 第一章 概述——1.TCP/IP设计遵循的两个原则

    1.端到端原则(end-to-end principle) 当我们设计一个大的系统(如操作系统或协议族)时,随之而来的一个问题通常是在什么位置实现某个功能.影响TCP/IP协议族设计的一个重要原则是端 ...

  4. Your Ride Is Here 你的飞碟在这儿 USACO 模拟

    1001: 1.1.1 Your Ride Is Here 你的飞碟在这儿 时间限制: 1 Sec  内存限制: 128 MB提交: 9  解决: 9[提交] [状态] [讨论版] [命题人:外部导入 ...

  5. 2018 Multi-University Training Contest 10

      Recently, TeaTree acquire new knoledge gcd (Greatest Common Divisor), now she want to test you. As ...

  6. 《Java核心技术》 JVM指令集

    https://www.jianshu.com/p/bc91c6b46d7b

  7. java类中元素初始化顺序

    结论:对于静态变量.静态初始化块.变量.初始化块.构造器,它们的初始化顺序依次是(静态变量.静态初始化块)>(变量.初始化块)>构造器. public class Test4 { @Tes ...

  8. TornadoFx学习笔记(1)——常用的代码片段

    Tornadofx是基于JavaFx的一个kotlin实现的框架 之后看情况补充.. 1.读取resources文件夹中的文件 如图 想要读取config.properties文件,有两种方法 在cl ...

  9. Jenkins-正则表达式提取Cookie

    场景描述:用户登录查询数据:登录时响应头返回Cookie,将Cookie使用正则表达式提取出来,在下一个请求“查询数据”时,在请求头中使用此Cookie 1.添加“登录”http请求 2.在后置处理器 ...

  10. 关于neo4j初入门(1)

    图形数据库也称为图形数据库管理系统或GDBMS. Neo4j的官方网站:http://www.neo4j.org Neo4j的优点 它很容易表示连接的数据 检索/遍历/导航更多的连接数据是非常容易和快 ...