codeforces 1025B Weakened Common Divisor(质因数分解)
题意:
给你n对数,求一个数,可以让他整除每一对数的其中一个
思路:
枚举第一对数的质因数,然后暴力
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 2e7+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); inline int read(){
int num;
char ch;
while((ch=getchar())<'' || ch>'');
num=ch-'';
while((ch=getchar())>='' && ch<=''){
num=num*+ch-'';
}
return num;
}
int c = ;
int p[maxn];
void d(int x){
for(int i=;1ll*i*i<=x;i++)if(x%i==){
p[c++]=i;
while(x%i==)x/=i;
}
if(x>)p[c++]=x;
}
ll gcd(ll a, ll b){
return b == ? a : gcd(b, a % b);
}
PLL pa[ + ];
bool cmp(PLL a, PLL b){
return max(a.fst, a.sc) < max(b.fst, b.sc);
}
int main() {
int n;
scanf("%d", &n); for(int i = ; i < n; i++){
scanf("%I64d %I64d", &pa[i].fst, &pa[i].sc);
}
//sort(pa, pa+n, cmp);
d(pa[].fst);
d(pa[].sc);
if(n==){
printf("%I64d", pa[].fst);
return ;
}
for(int i = ; i < c; i++){
int flg = ;
for(int j = ; j < n && flg; j++){
if(pa[j].fst%p[i]!= && pa[j].sc%p[i]!=) flg = ; }
if(flg){
printf("%d", p[i]);
return ;
}
}
printf("-1");
return ;
}
codeforces 1025B Weakened Common Divisor(质因数分解)的更多相关文章
- CodeForces - 1025B Weakened Common Divisor
http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...
- codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- CF #505 B Weakened Common Divisor(数论)题解
题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...
- Codeforces #505(div1+div2) B Weakened Common Divisor
题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor
[链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...
- HDU - 1019 - Least Common Multiple - 质因数分解
http://acm.hdu.edu.cn/showproblem.php?pid=1019 LCM即各数各质因数的最大值,搞个map乱弄一下就可以了. #include<bits/stdc++ ...
- CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...
- CF1025B Weakened Common Divisor
思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...
随机推荐
- CentOS 安装图形化界面后重启出现许可等事项操作
这是CentOS内核的初始设置页面,下面给出中文解释及操作方法. 1.CentOS Linux 7 初始设置(核心) 1)[!]许可证信息 (没有接受许可证) 请您选择[‘1’ 输入许可证信息 | ‘ ...
- jupyter启动后,浏览器自动打开,但是显示空白
解决办法 1.在Windows菜单中,搜索regedit,打开它.2.导航到计算机> HKEY_CLASSES_ROOT> .js> Content Type(如果没找到需要新建或直 ...
- SpringBoot2 整合 Zookeeper组件,管理架构中服务协调
本文源码:GitHub·点这里 || GitEE·点这里 一.Zookeeper基础简介 1.概念简介 Zookeeper是一个Apache开源的分布式的应用,为系统架构提供协调服务.从设计模式角度来 ...
- 《深入理解 Java 虚拟机》读书笔记:虚拟机性能监控与故障处理工具
正文 一.JDK 的命令行工具 JDK 的 bin 目录下提供了一些用于监视虚拟机和故障处理的命令行工具. 名称 主要作用 jps JVM Process Status Tool,显示正在运行的虚拟机 ...
- windows I/O设备
当外部设备连接到windows后,设备所连接到的集线器驱动程序将为设备分配硬件ID,然后Windows 使用硬件 Id 查找设备与包含设备驱动程序的驱动程序包之间最近的匹配项. 如果查找到,设备就可以 ...
- 三、Nginx原理解析
Nginx原理解析 一.反向代理 工作流程 用户通过域名发出访问Web服务器的请求,该域名被DNS服务器解析为反向代理服务器的IP地址: 反向代理服务器接受用户的请求: 反向代理服务器在本地缓存中查找 ...
- vue学习--组件之间的传值方式
1.概述 vue由多个组件构成页面,在不同的组件中有不同的联系,组件之间的传值是十分有必要的 2.父子组件之间传值 --props和$emit 父传子:通过props 方法:子组件:props:['m ...
- Pycharm 中的翻译工具
对于开发来说,大多数哥们英文欠缺,比如在下,我们大多数使用的开发工具是IDEA,IDEA 很强大,开发起来顺手. 废话不多说,让我们看一下如何使用翻译器. 打开Pycharm 的setting 设置, ...
- Java多线程的创建(一)
方法一:继承Thread类实现 1.创建一个类A,并继承Thread类 2.重写A的run()方法 3.创建A的实例对象b,即创建了线程对象 4.使用b调用start()方法:启动线程(会自动调用ru ...
- 关于爬虫的日常复习(8)—— 实战:request+正则爬取猫眼榜单top100