#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
// head namespace linear_seq {
const int N=10010;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
ll ans=0,pnt=0;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=0;p--) {
mul(res,res,k);
if ((n>>p)&1) {
for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
int L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; ll dp[3000];
int main() {
int _;
for(scanf("%d",&_);_;_--) {
int k;
ll n;
scanf("%d%lld",&k,&n);
if(n==-1) {
printf("%lld\n",2*powmod(k+1,mod-2)%mod);
} else {
VI t;
dp[0]=1;
t.push_back(dp[0]);
for(int i=1;i<=2*k;i++) {
dp[i]=0;
for(int j=max(0,i-k);j<i;j++) {
dp[i]=(dp[i]+dp[j])%mod;
}
dp[i]=dp[i]*powmod(k,mod-2)%mod;
t.push_back(dp[i]);
}
printf("%lld\n",linear_seq::gao(t,n));
}
}
}

BM线性递推的更多相关文章

  1. HDU - 6172:Array Challenge (BM线性递推)

    题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. ...

  2. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  3. LG5487 【模板】线性递推+BM算法

    [模板]线性递推+BM算法 给出一个数列 \(P\) 从 \(0\) 开始的前 \(n\) 项,求序列 \(P\) 在\(\bmod~998244353\) 下的最短线性递推式,并在 \(\bmod~ ...

  4. BM求线性递推模板(杜教版)

    BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...

  5. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

  6. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

  7. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  8. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  9. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

随机推荐

  1. hadoop镜像文件和编辑日志文件

    镜像文件和编辑日志文件 1)概念 namenode被格式化之后,将在/opt/module/hadoop-2.7.2/data/tmp/dfs/name/current目录中产生如下文件 edits_ ...

  2. Xcode 5 SVN配置

    from:http://stackoverflow.com/questions/19180718/import-a-project-in-svn-from-xcode-5/19410994#19410 ...

  3. 杂项-Maven-guava:guava

    ylbtech-杂项-Maven-guava:guava Guava是一种基于开源的Java库,其中包含谷歌正在由他们很多项目使用的很多核心库.这个库是为了方便编码,并减少编码错误.这个库提供用于集合 ...

  4. FastJson使用方法

    FastJson是阿里的一款开源框架,用来快速实现Java的序列化和反序列化. 官方地址:https://github.com/alibaba/fastjson 使用方法演示: 下载jar包,使用ID ...

  5. java_缓冲流(字符输出流)

    /** 字符缓冲流: * java.io.BufferedWriter extends writer * BufferedWriter:字符缓冲输出流: * * 构造方法: * BufferedWri ...

  6. (转)NodeJS收发GET和POST请求

    NodeJS收发GET和POST请求 目录: 一 express框架接收 二 接收Get 三 发送Get 四 接收Post 五 发送Post 一 express框架接收 1 2 3 4 5 app.g ...

  7. 【学术篇】状态压缩动态规划——POJ3254/洛谷1879 玉米田Corn Field

    我要开状压dp的坑了..直播从入门到放弃系列.. 那就先拿一道状压dp的水题练练手吧.. 然后就找到了这一道..这道题使我清醒地认识到阻碍我的不是算法,而是视力= = 传送门: poj:http:// ...

  8. [转]gnome环境中将家目录下预设的文件夹由中文名称改为英文名称

    参考文章:gnome环境中将家目录下预设的文件夹由中文名称改为英文名称 打开终端 1 修改语言环境为英文 export LANG=en_US 如果想修改语言环境为日语,可执行 export LANG= ...

  9. Data Dependency

    https://en.wikipedia.org/wiki/Data_dependency (There’s some misleading expression on the flow/data d ...

  10. Python-网络编程之粘包、UDP

    目录 粘包问题 subprocess模块 struct模块 UDP协议编程 简易qq聊天室 粘包问题 什么是粘包问题呢? 在我们写 tcp socket编程的时候,tcp协议是一个流式的协议,服务端第 ...