为什么我感觉这题难度虚高啊……

区间众数的出现次数…

计算器算一下 \(\sqrt 500000 = 708\)

然后我们发现这题的突破口?

考虑分块出来[L,R]块的众数出现个数 用 \(\texttt{mx[L][R]}\) 维护就可以了

每次考虑一个L… 然后R指针一直向右移不断的更新到N 这样子做的复杂度因为最多有 \(\sqrt n\) 个块 所以复杂度大概是 \(n\sqrt n\) 实际上还少一点…

然后整块的想好了……单独的怎么处理?

分类讨论

1 \(\texttt{L}\)和\(\texttt{R}\) 所在的块相同 那么分块的常规暴力操作(记得清空…)复杂度保证是 \(\sqrt n\)的

2 不在一个块的话 考虑用一种其他方法…记录一个\(\texttt{v[i]}\)存的是每个 数值 i 的出现位置 再记录一个 \(\texttt{pos[i]}\) 表示 i 这个数值在序列里是第几次出现…(主要还是方便vector的操作…)

您已经统计出来了 \(\texttt{L-R}\) 的最多次数 肯定是保底 \(\texttt{mx[L][R]}\) 了 根据这个基础 这样指针移动就相对来说保证了复杂度…每次也是\(\sqrt n\)的

讲下具体操作 记录了这个 \(pos_i\) 是 i 在 \(a_i\) 第几个出现 然后 \(v_{a_i}\)是记录了每个 \(a_i\)的出现位置 于是就可以 在左半区间的时候判断是否\(\leq \texttt{R}\) 在右半区间的时候判断是否\(\ge\texttt{L}\) 如果满足条件就加大 当前的\(\texttt{ans}\) 直到不满足 肯定是最优的…

#include<bits/stdc++.h>
using namespace std ;
const int N = 5e5 + 10 ;
int n , m , a[N] , b[N] , bl[N] , unt = 0 , L[710] , R[710] , mx[710][710] , tot[N] , pos[N] ;
vector < int > v[N] ;
inline int query(int l , int r) { int ans = 0 ;
if(bl[l] == bl[r]) {
for(register int i = l ; i <= r ; i ++) tot[a[i]] = 0 ;
for(register int i = l ; i <= r ; i ++) ans = max(ans , ++ tot[a[i]]) ;
return ans ;
} ans = mx[bl[l] + 1][bl[r] - 1] ;
for(register int i = l ; i <= R[bl[l]] ; i ++) {
int it = pos[i] ; while(it + ans < v[a[i]].size() && v[a[i]][it + ans] <= r) ++ ans ;
}
for(register int i = L[bl[r]] ; i <= r ; i ++) {
int it = pos[i] ; while(it - ans >= 0 && v[a[i]][it - ans] >= l) ++ ans ;
} return ans ;
}
signed main() {
// freopen("0.in" , "r" , stdin) ;
ios :: sync_with_stdio(false) ;
cin.tie(0) ;cout.tie(0) ;
cin >> n >> m ;
for(register int i = 1 ; i <= n ; i ++) { cin >> a[i] ; b[i] = a[i] ; }
sort(b + 1 , b + n + 1) ;
int len = unique(b + 1 , b + n + 1) - b - 1 ;
for(register int i = 1 ; i <= n ; i ++) { a[i] = lower_bound(b + 1 , b + len + 1 , a[i]) - b ; }
for(register int i = 1 ; i <= n ; i ++) { v[a[i]].push_back(i) ; pos[i] = v[a[i]].size() ; pos[i] -- ; }
int unt = sqrt(n) ;
for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
for(register int i = 1 ; i <= bl[n] ; i ++) { L[i] = (i - 1) * unt + 1 ; R[i] = i * unt ; }
R[bl[n]] = n ;
for(register int i = 1 ; i <= bl[n] ; i ++) {
memset(tot , 0 , sizeof(tot)) ;
for(register int j = i ; j <= bl[n] ; j ++){
mx[i][j] = mx[i][j - 1] ;
for(register int k = L[j] ; k <= R[j] ; k ++) mx[i][j] = max(mx[i][j] , ++ tot[a[k]]) ;
}
}
int lastans = 0 ;
for(register int i = 1 ; i <= m ; i ++) {
int l , r ; cin >> l >> r ;
l ^= lastans ; r ^= lastans ;
if(l > r) swap(l , r) ;
cout << (lastans = query(l , r)) << '\n' ;
}
return 0 ;
}

P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]的更多相关文章

  1. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  2. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  3. Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...

  4. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  5. [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]

    题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...

  6. [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III

    题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...

  7. [Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...

  8. [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)

    二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...

  9. [Ynoi2019模拟赛]Yuno loves sqrt technology II

    题目大意: 给定一个长为\(n\)的序列,\(m\)次询问,每次查询一个区间的逆序对数. 32MB. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 二次离线莫队. 对于每个区 ...

随机推荐

  1. CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet

    在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...

  2. Class Literal(Java)

    前言 上一节我们讨论过通过关键字synchronized实现线程同步,同时最主要了解到在Java中className.class所代表的具体含义,在博客写完后,感觉还是有点迷糊,然后再次深入了解后,原 ...

  3. android手机遍历安装应用

    /** * 遍历程序列表,判断是否安装安全支付服务 * * @return */ public boolean isMobile_spExist() { PackageManager manager ...

  4. windows下python3使用pip安装scrapy提示安装失败

    我的环境:     python3.6,     win10,      原因:不能成功安装twisted,因为twisted与高版本的python有兼容问题. 解决:1,先下载twisted二进制文 ...

  5. 进阶之路 | 奇妙的Window之旅

    前言 本文已经收录到我的Github个人博客,欢迎大佬们光临寒舍: 我的GIthub博客 学习清单: Window&WindowManagerService Window&Window ...

  6. StarUML之四、StarUML的Diagrams(图)与Elements(元素)及相关属性

    Diagrams(图)可以理解为画布  1:创建图 在右侧的Model Explorer管理界面的第一个节点右键,或者选择菜单中Model | Add Diagram | [DiagramType]都 ...

  7. UNIX环境高级编程-第三章习题

    1,当读写磁盘文件时,read,write等函数确实是不带缓冲机制的吗?请说明原因. 答:所有磁盘I/O都要经过内核的块缓存区(即内核的缓冲区高速缓存).唯一例外的是对原始磁盘设备的I/O,但是我们不 ...

  8. linux系统下apache服务的启动、停止、重启命令

    本文章简单的介绍了关于linux下在利用命令来操作apache的基本操作如启动.停止.重启等操作,对入门者不错的选择.本文假设你的apahce安装目录为 usr local apache2,这些方法适 ...

  9. idea将普通项目转换为maven项目

    方式一 1.在项目根目录下,新建文件 pom.xml,并填写好内容. 2.在pom.xml文件上,右键 Add as Maven Project 或 在项目上,右键 Add Framework Sup ...

  10. .net生成PDF文件的几种方式

    以下为在.net mvc中,生成pdf的几种方式,资料都是在做项目时网上找的 1.使用Microsoft.Office.Interop.Word.dll将word转换为PDF dll可以单独下载,一般 ...