PCA技术的自我理解(催眠
Principal component analysis(PCA)
中文就是主成成分分析。在学数学建模的时候将这分为了评价类的方法(我实在是很难看出来,在机器学习中是属于无监督学习降维方法的一种线性降维方法。
举一个最简单的栗子(下图,二维的数据降到一维,就得找到一条直线将所有的点都投影到该直线上,这条直线需要满足的条件就是投影在这条直线上的所有点的方差最大,减少信息的损失。

PCA主要用于当数据的维度过高或者不同维度的数据之间存在相关的关系,造成了机器学习性能的下降的问题。这个时候PCA就是要将高维特征转化为独立性较高的低维特征,降低特征之间的相关性。
Math of warning!
\(X_{nxm}\):n维特征的数据,\(Z_{kxm}\):k维特征的数据,PCA技术就是要找到一组\(W_{kxn}\)使得\(Z=W\cdot X\),同时\(Maximize(\sum_i^kVar(Z_i))\),\(Z_i\)表示第i-D下的投影。
第一步 将X降到\(Z_1,Z_2\)上
\(Z_1=W_1\cdot X\)
\(Var(Z_1)=\frac{1}{m}\sum_{j=1}^m(Z_{1j}-\overline{Z_1})^2\),\(|W_1|=1\)投影但是不影响大小
\(Z_2=W_2\cdot X\)
\(Var(Z_2)=\frac{1}{m}\sum_{j=1}^m(Z_{2j}-\overline{Z_2})^2\),\(|W_2|=1\)投影但是不影响大小,但是为了是方差最大或者说使特征之间的相关性最低,\(W_1\cdot W_2=0\)
PS:如果不加这个条件的话\(W_1==W_2\)第二步 求解\(Var(Z_1),Var(Z_2)\)

PS:注意这里加\(\cdot\)是向量积,不加的是矩阵乘法(坑
\(Z_{1j}=W_1\cdot X_j,\overline{Z_1}=\frac{1}{m}\sum_{j=1}^mZ_{1j}=\frac{1}{m}\sum_{j=1}^mW_1\cdot X_j=W_1\cdot \overline{X_j}\)
\(Var(Z_1)=\frac{1}{m}\sum_{j=1}^m(W_1\cdot X_j-W_1\cdot \overline{X_j})^2=\frac{1}{m}\sum_{j=1}^m[W_1\cdot (X_j-\overline{X_j})]^2=W_1^T[\frac{1}{m}\sum_{j=1}^m(X_j-\overline{X_j})(X_j-\overline{X_j})^T]W_1=W_1^TCov(X)W_1=W_1^TSW_1,S=Cov(X)\)
接下来是最大化\(Var(Z_1)\),存在Constraint:\(|W_1|=1,W_1.TW_1-1=0\),利用拉格朗日算子法
\(g(W_1)=W_1^TSW_1-\alpha(W_1.TW_1-1)\)
\(\forall i<=m, \frac{\partial g(W_1)}{\partial W_{1i}}=0\rightarrow SW_1-\alpha W_1=0\) 可知\(W_1\)是S的特征向量,\(\alpha\)是S的特征值
\(Var(Z_1)=W_1^TSW_1=W_1^T\alpha W_1=\alpha W_1^TW_1=\alpha\),要是方差最大则\(\alpha\)是S的最大特征值,\(W_1\)为所对应的特征向量。按照相同的思路来最大化\(Var(Z_2)\),存在constraints:\(W_2^TW_2-1=0,W_1^TW_2=0\)
\(g(W_2)=W_2^TSW_2-\alpha(W_2^TW_2-1)-\beta(W_2^TW_1)\)
\(\forall i<=m, \frac{\partial g(W_2)}{\partial W_{2i}}=0\)
\(\rightarrow SW_2-\alpha W_2-\beta W_1=0 \rightarrow W_1^TSW_2-\alpha W_1^TW_2-\beta W_1^TW_1=0\)
\(\rightarrow \beta=W_1^TSW_2=(W_1^TSW_2)^T=W_2^TSW_1=W_2^T\lambda W_1=\lambda W_2^TW_1=0\)
因为\(\beta=0\)所以\(SW_2=\alpha W_2\),同理可知\(W_1\)是S的特征向量,\(\alpha\)是S的特征值
\(Var(Z_2)=W_2^TSW_2=\alpha\),要想方差最大且满足约束条件(隐含条件S是Symmetric的,特征向量是正交的),则\(\alpha\)是第二大的特征值且\(W_2\)是对应的特征向量。
- 第三步 得出结论
降至不同空间维度上保存的信息量的大小是降维所用S的特征向量所对应的特征值的大小决定的
Conclusions
1、因为S一定是实对称矩阵,则经过对S的奇异值分解以后\(S=Q\sum Q^T\),\(\sum\)是一个对角线为S的特征值的矩阵,Q是特征值对应的特征列向量矩阵,从Q中抽取特征值最大的对应的特征列向量就可以进行降维,并且通过特征值算出简单的信息损失情况。
import numpy as np
U,S,V=np.linalg.svd(S)
人生此处,绝对乐观
PCA技术的自我理解(催眠的更多相关文章
- 降维PCA技术
降维技术使得数据变得更易使用,并且它们往往能够去除数据中的噪声,使得机器学习任务往往更加精确. 降维往往作为预处理步骤,在数据应用到其它算法之前清洗数据.有很多技术可以用于数据降维,在这些技术中,独立 ...
- Thread线程join方法自我理解
Thread线程join方法自我理解 thread.join():等待thread线程运行终止,指的是main-thread(main线程)必须等待thread线程运行结束,才能继续thread.jo ...
- 《Python爬虫技术:深入理解原理、技术与开发》已经出版,送Python基础视频课程
好消息,<Python爬虫技术:深入理解原理.技术与开发>已经出版!!! JetBrains官方推荐图书!JetBrains官大中华区市场部经理赵磊作序!送Python基础视频课程!J ...
- gslb(global server load balance)技术的一点理解
gslb(global server load balance)技术的一点理解 前言 对于比较大的互联网公司来说,用户可能遍及海内外,此时,为了提升用户体验,公司一般会在离用户较近的地方建立机房,来服 ...
- SPP空间金字塔池化技术的直观理解
空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上 ...
- 【转】浅谈对主成分分析(PCA)算法的理解
以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...
- 关于PCA主成分分析的一点理解
PCA 即主成分分析技术,旨在利用降维的思想,把多指标转化为少数几个综合指标. 假设目前我们的数据特征为3,即数据维度为三,现在我们想将数据降维为二维,一维: 我们之前的数据其实就是三维空间中的一个个 ...
- 关于C#的委托(delegate)的自我理解
首先描述一个事情,一个老师饿了,他要去买东西填饱肚子,然后他发现他的学生“小李”在玩,没学习,于是就委托“小李”去帮他买吃的. 根据这件事我们来分析: 首先得有个老师(老师饿了是他的方法,老师买东西也 ...
- android 的生命周期自我理解
android的active的生命周期,经过网站的blog学习,加上自己的理解总结如下: 第1种:全新的启动应用程序顺序 onCreate--->onStart---->onResume ...
随机推荐
- Spring||Mails
JMail可以解决Java发送邮件,通过Jmail的核心javax.mail.jar实现,通过Jmail发送邮件需要经过以下步骤 1.创建解析邮件内容:Message类,通过javax.mail.in ...
- 20191121-11 Scrum立会报告+燃尽图 07
次作业要求参见 http://edu.cnblogs.com/campus/nenu/2019fall/homework/10071 一:组名: 组长组 组长:杨天宇 组员:魏新 罗杨美慧 王歆瑶 ...
- 用c++ 给易语言写支持库学习记录
废话我就不对说 直接开始 易语言官方下载的易语言安装路径下 有一个SDK文件夹 我们点进入cpp文件夹里面提供是c++的SDK elib文件夹里就是sdk 我们新建一个win32项目 这里我用的是VS ...
- apache相关实验-1
一.目录别名实验 当 apache 接受请求时,在默认情况下会将 DocumentRoot 目录中的文件送到客户端,如果想将某一不在 DocumentRoot 目录中的文件共享到网站上,并希望将它们留 ...
- Angular Schematics 三部曲之 Add
前言 因工作繁忙,差不多有三个月没有写过技术文章了,自八月份第一次编写 schematics 以来,我一直打算分享关于 schematics 的编写技巧,无奈还是拖到了年底. Angular Sche ...
- K8S集群搭建
K8S集群搭建 摘要 是借鉴网上的几篇文章加上自己的理解整理得到的结果,去掉了一些文章中比较冗余的组件和操作,力争做到部署简单化. K8S组件说明 Kubernetes包含两种节点角色:master节 ...
- getopt命令
最近学习了一下getopt(不是getopts)命令来处理执行shell脚本传入的参数,在此记录一下,包括长选项.短选项.以及选项的值出现的空格问题,最后写了个小的脚本来处理输入的参数 首先新建一个t ...
- YOLOv3 K-means获取anchors大小
YOLOv1和YOLOv2简单看了一下,详细看了看YOLOv3,刚看的时候是蒙圈的,经过一番研究,分步记录一下几个关键的点: v2和v3中加入了anchors和Faster rcnn有一定区别,这个a ...
- 清晰架构(Clean Architecture)的Go微服务: 依赖注入(Dependency Injection)
在清晰架构(Clean Architecture)中,应用程序的每一层(用例,数据服务和域模型)仅依赖于其他层的接口而不是具体类型. 在运行时,程序容器¹负责创建具体类型并将它们注入到每个函数中,它使 ...
- python 矩阵向右旋转90°(分行输入输出)
输入格式 第一行输入两个整数n,m,用空格隔开. 接下来n行,每行输入m个整数,表示输入矩阵.矩阵元素都是int范围内的整数. 输出格式 输出m行,每行n个空格隔开的整数,表示旋转以后的矩阵.注意:每 ...