这种图论问题都挺考验小思维的.

首先,我们把从 $x$ 连出去两条边的都合并了.

然后再去合并从 $x$ 连出去一条原有边与一条新边的情况.

第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可.

code:

#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#define N 100006
#define ll long long
using namespace std;
namespace IO
{
inline void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
int edges;
queue<int>q;
vector<int>G[N];
int size[N],p[N],out[N],vis[N];
inline void add(int u,int v) { G[u].push_back(v); }
inline int find(int x) { return p[x]==x?x:p[x]=find(p[x]); }
inline void initialize() { for(int i=0;i<N;++i) size[i]=1,p[i]=i; }
int main()
{
// IO::setIO("input");
int i,j,n,m;
initialize();
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y),++out[x],add(x,y);
}
for(i=1;i<=n;++i)
{
for(j=1;j<G[i].size();++j)
{
int pr=G[i][j-1],cur=G[i][j];
if(find(pr)!=find(cur))
{
pr=find(pr),cur=find(cur);
p[pr]=cur,size[cur]+=size[pr];
}
}
}
for(i=1;i<=n;++i)
{
int x=find(i);
if(size[x]>1) q.push(i),vis[i]=1;
}
while(!q.empty())
{
int u=q.front(); q.pop();
for(i=0;i<G[u].size();++i)
{
int v=G[u][i];
if(find(v)!=find(u))
{
int a=find(u),b=find(v);
p[a]=b,size[b]+=size[a];
}
if(!vis[v]) q.push(v),vis[v]=1;
}
}
ll ans=0;
for(i=1;i<=n;++i)
{
if(p[i]==i)
ans+=(size[i]>1?(ll)(size[i]-1)*size[i]:out[i]);
}
printf("%lld\n",ans);
return 0;
}

  

LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  3. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  4. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

  5. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  6. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  7. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  8. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  9. loj 2759「JOI 2014 Final」飞天鼠

    loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...

随机推荐

  1. 团队项目——Beta冲刺

    团队项目-Beta冲刺 作业所属课程 软件工程 作业要求 团队项目-Beta冲刺 团队名称 运气王团队 作业目标 (1)SCRUM部分(2)PM 报告 成员列表: 1.团队成员的学号列表 |何宸锐(组 ...

  2. Visual studio之C#的一些常见问题01switch case常量

    switch() {case CONST: break;}语句中,case后面的常量表达方法在C/C++中,switch() {case CONST: break;}语句中的CONST常常使用宏定义来 ...

  3. Docker(二) 镜像

    简介 Docker镜像是什么? 它是一个只读的文件,就类似于我们安装操作系统时候所需要的那个iso光盘镜像,通过运行这个镜像来完成各种应用的部署. 这里的镜像就是一个能被docker运行起来的一个程序 ...

  4. 自动化运维之Ansible入门

    Ansible简介 Ansible是什么? Ansible 简单的说是一个配置管理系统(ConfiGuration Management System).你只需要可以使用ssh访问你的服务器或设备.它 ...

  5. SVN: 在Ecplise管理SVN资源库

    Window->Show View->SVN

  6. Spring 核心功能演示

    Spring 核心功能演示 Spring Framework 简称 Spring,是 Java 开发中最常用的框架,地位仅次于 Java API,就连近几年比较流行的微服务框架 SpringBoot, ...

  7. ubuntu16.04+Pangolin安装

    学习视觉Slam十四讲到第三章的可视化演示的时候需要Panglolin的使用,因此在Githup上下载了安装包:https://github.com/stevenlovegrove/Pangolin ...

  8. Webpack 一,打包JS

    创建入口文件 app.js // es6 module 规范 import sum_d from './sum.js' import {sum_e} from './sum.js' // commco ...

  9. Android客户端OkHttp的使用以及tomcat服务器的解析客户端发过来的数据

    2020-02-15 21:25:42 ### android客户端客户向服务器发送json字符串或者以参数请求的方式发送数据 其中又分为post请求和get请求 1.activity.xml < ...

  10. 《C# 爬虫 破境之道》:第二境 爬虫应用 — 第四节:小说网站采集

    之前的章节,我们陆续的介绍了使用C#制作爬虫的基础知识,而且现在也应该比较了解如何制作一只简单的Web爬虫了. 本节,我们来做一个完整的爬虫系统,将之前的零散的东西串联起来,可以作为一个爬虫项目运作流 ...