LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS
这种图论问题都挺考验小思维的.
首先,我们把从 $x$ 连出去两条边的都合并了.
然后再去合并从 $x$ 连出去一条原有边与一条新边的情况.
第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可.
code:
#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#define N 100006
#define ll long long
using namespace std;
namespace IO
{
inline void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
int edges;
queue<int>q;
vector<int>G[N];
int size[N],p[N],out[N],vis[N];
inline void add(int u,int v) { G[u].push_back(v); }
inline int find(int x) { return p[x]==x?x:p[x]=find(p[x]); }
inline void initialize() { for(int i=0;i<N;++i) size[i]=1,p[i]=i; }
int main()
{
// IO::setIO("input");
int i,j,n,m;
initialize();
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y),++out[x],add(x,y);
}
for(i=1;i<=n;++i)
{
for(j=1;j<G[i].size();++j)
{
int pr=G[i][j-1],cur=G[i][j];
if(find(pr)!=find(cur))
{
pr=find(pr),cur=find(cur);
p[pr]=cur,size[cur]+=size[pr];
}
}
}
for(i=1;i<=n;++i)
{
int x=find(i);
if(size[x]>1) q.push(i),vis[i]=1;
}
while(!q.empty())
{
int u=q.front(); q.pop();
for(i=0;i<G[u].size();++i)
{
int v=G[u][i];
if(find(v)!=find(u))
{
int a=find(u),b=find(v);
p[a]=b,size[b]+=size[a];
}
if(!vis[v]) q.push(v),vis[v]=1;
}
}
ll ans=0;
for(i=1;i<=n;++i)
{
if(p[i]==i)
ans+=(size[i]>1?(ll)(size[i]-1)*size[i]:out[i]);
}
printf("%lld\n",ans);
return 0;
}
LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS的更多相关文章
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...
- LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
- loj 2759「JOI 2014 Final」飞天鼠
loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...
随机推荐
- Python中的 if __name__ == '__main__' 是什么意思?
最近在看Python代码的时候,因为是Python初学者,看到这个if __name__ == '__main__' 的判断,并且下面还有代码语句,看了其他地方的说明,还是没搞明白是什么意思, 在看到 ...
- ios--->上下拉刷新控件MJRefresh
上下拉刷新控件MJRefresh 一.类结构 MJRefreshComponent.h MJRefreshHeader.h MJRefreshFooter.h MJRefreshAutoFooter. ...
- Kafka系列1:Kafka概况
Kafka系列1:Kafka概况 Kafka是当前分布式系统中最流行的消息中间件之一,凭借着其高吞吐量的设计,在日志收集系统和消息系统的应用场景中深得开发者喜爱.本篇就聊聊Kafka相关的一些知识点. ...
- sql serverDB运维实用sql大全
运维sql server的sql总结,包含阻塞语句.等待语句.某个时间段的sql性能查询等等常用sql语句 ##断开库的连接,记得修改库名 USE masterGOALTER DATABASE [DB ...
- 探究HashMap1.8的扩容
扩容前 扩容后 机制 else { // preserve order Node<K,V> loHead = null, loTail = null;//低指针 Node<K,V&g ...
- 网络最大流(EK)
以前在oi中见到网络流的题都是直接跳过,由于本蒟蒻的理解能力太弱,导致网络流的学习不断推迟甚至被安排在了tarjan之后,原本计划于学习完最短路后就来学网络流的想法也随之破灭,在看完众多大佬 的博客后 ...
- DaSiamRPN学习
9月14日,2018年视觉目标跟踪挑战赛(Visual-Object-Tracking Challenge 2018)的结果在ECCV Workshop上揭晓.VOT2018共设三项任务:Baseli ...
- MBMD(MobileNet-based tracking by detection algorithm)作者答疑
If you fail to install and run this tracker, please email me (zhangyunhua@mail.dlut.edu.cn) Introduc ...
- 【Java并发工具类】ReadWriteLock
前言 前面介绍过ReentrantLock,它实现的是一种标准的互斥锁:每次最多只有一个线程能持有ReentrantLock.这是一种强硬的加锁规则,在某些场景下会限制并发性导致不必要的抑制性能.互斥 ...
- javascript 浅复制 和 深复制
如何区分深拷贝与浅拷贝,简单点来说,就是假设 B复制了A,当修改A时,看B是否会发生变化,如果B也跟着变了,说明这是浅拷贝, 如果B没变,那就是深拷贝 实现思路 1 json 深度拷贝 2 遍历递归 ...