这种图论问题都挺考验小思维的.

首先,我们把从 $x$ 连出去两条边的都合并了.

然后再去合并从 $x$ 连出去一条原有边与一条新边的情况.

第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可.

code:

#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#define N 100006
#define ll long long
using namespace std;
namespace IO
{
inline void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
int edges;
queue<int>q;
vector<int>G[N];
int size[N],p[N],out[N],vis[N];
inline void add(int u,int v) { G[u].push_back(v); }
inline int find(int x) { return p[x]==x?x:p[x]=find(p[x]); }
inline void initialize() { for(int i=0;i<N;++i) size[i]=1,p[i]=i; }
int main()
{
// IO::setIO("input");
int i,j,n,m;
initialize();
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y),++out[x],add(x,y);
}
for(i=1;i<=n;++i)
{
for(j=1;j<G[i].size();++j)
{
int pr=G[i][j-1],cur=G[i][j];
if(find(pr)!=find(cur))
{
pr=find(pr),cur=find(cur);
p[pr]=cur,size[cur]+=size[pr];
}
}
}
for(i=1;i<=n;++i)
{
int x=find(i);
if(size[x]>1) q.push(i),vis[i]=1;
}
while(!q.empty())
{
int u=q.front(); q.pop();
for(i=0;i<G[u].size();++i)
{
int v=G[u][i];
if(find(v)!=find(u))
{
int a=find(u),b=find(v);
p[a]=b,size[b]+=size[a];
}
if(!vis[v]) q.push(v),vis[v]=1;
}
}
ll ans=0;
for(i=1;i<=n;++i)
{
if(p[i]==i)
ans+=(size[i]>1?(ll)(size[i]-1)*size[i]:out[i]);
}
printf("%lld\n",ans);
return 0;
}

  

LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  3. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  4. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

  5. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  6. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  7. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  8. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  9. loj 2759「JOI 2014 Final」飞天鼠

    loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...

随机推荐

  1. Python中的 if __name__ == '__main__' 是什么意思?

    最近在看Python代码的时候,因为是Python初学者,看到这个if __name__ == '__main__' 的判断,并且下面还有代码语句,看了其他地方的说明,还是没搞明白是什么意思, 在看到 ...

  2. ios--->上下拉刷新控件MJRefresh

    上下拉刷新控件MJRefresh 一.类结构 MJRefreshComponent.h MJRefreshHeader.h MJRefreshFooter.h MJRefreshAutoFooter. ...

  3. Kafka系列1:Kafka概况

    Kafka系列1:Kafka概况 Kafka是当前分布式系统中最流行的消息中间件之一,凭借着其高吞吐量的设计,在日志收集系统和消息系统的应用场景中深得开发者喜爱.本篇就聊聊Kafka相关的一些知识点. ...

  4. sql serverDB运维实用sql大全

    运维sql server的sql总结,包含阻塞语句.等待语句.某个时间段的sql性能查询等等常用sql语句 ##断开库的连接,记得修改库名 USE masterGOALTER DATABASE [DB ...

  5. 探究HashMap1.8的扩容

    扩容前 扩容后 机制 else { // preserve order Node<K,V> loHead = null, loTail = null;//低指针 Node<K,V&g ...

  6. 网络最大流(EK)

    以前在oi中见到网络流的题都是直接跳过,由于本蒟蒻的理解能力太弱,导致网络流的学习不断推迟甚至被安排在了tarjan之后,原本计划于学习完最短路后就来学网络流的想法也随之破灭,在看完众多大佬 的博客后 ...

  7. DaSiamRPN学习

    9月14日,2018年视觉目标跟踪挑战赛(Visual-Object-Tracking Challenge 2018)的结果在ECCV Workshop上揭晓.VOT2018共设三项任务:Baseli ...

  8. MBMD(MobileNet-based tracking by detection algorithm)作者答疑

    If you fail to install and run this tracker, please email me (zhangyunhua@mail.dlut.edu.cn) Introduc ...

  9. 【Java并发工具类】ReadWriteLock

    前言 前面介绍过ReentrantLock,它实现的是一种标准的互斥锁:每次最多只有一个线程能持有ReentrantLock.这是一种强硬的加锁规则,在某些场景下会限制并发性导致不必要的抑制性能.互斥 ...

  10. javascript 浅复制 和 深复制

    如何区分深拷贝与浅拷贝,简单点来说,就是假设 B复制了A,当修改A时,看B是否会发生变化,如果B也跟着变了,说明这是浅拷贝, 如果B没变,那就是深拷贝 实现思路 1 json 深度拷贝 2 遍历递归 ...