这种图论问题都挺考验小思维的.

首先,我们把从 $x$ 连出去两条边的都合并了.

然后再去合并从 $x$ 连出去一条原有边与一条新边的情况.

第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可.

code:

#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#define N 100006
#define ll long long
using namespace std;
namespace IO
{
inline void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
int edges;
queue<int>q;
vector<int>G[N];
int size[N],p[N],out[N],vis[N];
inline void add(int u,int v) { G[u].push_back(v); }
inline int find(int x) { return p[x]==x?x:p[x]=find(p[x]); }
inline void initialize() { for(int i=0;i<N;++i) size[i]=1,p[i]=i; }
int main()
{
// IO::setIO("input");
int i,j,n,m;
initialize();
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y),++out[x],add(x,y);
}
for(i=1;i<=n;++i)
{
for(j=1;j<G[i].size();++j)
{
int pr=G[i][j-1],cur=G[i][j];
if(find(pr)!=find(cur))
{
pr=find(pr),cur=find(cur);
p[pr]=cur,size[cur]+=size[pr];
}
}
}
for(i=1;i<=n;++i)
{
int x=find(i);
if(size[x]>1) q.push(i),vis[i]=1;
}
while(!q.empty())
{
int u=q.front(); q.pop();
for(i=0;i<G[u].size();++i)
{
int v=G[u][i];
if(find(v)!=find(u))
{
int a=find(u),b=find(v);
p[a]=b,size[b]+=size[a];
}
if(!vis[v]) q.push(v),vis[v]=1;
}
}
ll ans=0;
for(i=1;i<=n;++i)
{
if(p[i]==i)
ans+=(size[i]>1?(ll)(size[i]-1)*size[i]:out[i]);
}
printf("%lld\n",ans);
return 0;
}

  

LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS的更多相关文章

  1. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  2. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  3. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  4. LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)

    题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...

  5. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  6. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  7. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  8. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  9. loj 2759「JOI 2014 Final」飞天鼠

    loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...

随机推荐

  1. 使用C++进行声明式编程

            声明式编程(英语:Declarative programming)是一种编程范型,与命令式编程相对立.它描述目目标性质,让计算机明白目标,而非流程.声明式编程不用告诉电脑问题领域,从而 ...

  2. GP工作室——系统设计

    团队作业第二次--系统设计 问题 答案 这个作业属于哪个课程 软件工程 这个作业要求在哪里 作业要求 团队名称 GP工作室 这个作业的目标 对项目软件进行更为详细的系统性设计 按照本游戏的设计要求,我 ...

  3. 团队项目-Beta冲刺1

    博客介绍 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience 这个作业要求在哪里 https://w ...

  4. c#数字图像处理(六)直方图均衡化

    直方图均衡化又称直方图修平,是一种很重要的非线性点运算.使用该方法可以加强图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候.通过这种方法,亮度可以更好的在直方图上分布. 直方图均衡化的基 ...

  5. CSS-15-定位

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. C# 定时器导致的内存泄露问题

    C# 中有三种定时器,System.Windows.Forms 中的定时器和 System.Timers.Timer 的工作方式是完全一样的,所以,这里我们仅讨论 System.Timers.Time ...

  7. 『开源协议』Creative Commons Attribution 3.0 License . 协议的个人理解,并 转载分享 4000个 精美可商用小图标

    为什么会研究 Creative Commons Attribution 3.0 License Creative Commons Attribution 3.0 License 简称 CC3,是 一种 ...

  8. Codeforces_456_A

    http://codeforces.com/problemset/problem/456/A 按价格排序,比较质量. #include<cstdio> #include<algori ...

  9. ZOJ 4067 Books (2018icpc青岛J) (贪心)

    题意 给你一个长度为n的数组,代表每一个物品的价格.你有一个初始钱数\(x\),采用以下方法贪心: 从\(1\)到\(n\)扫一遍,如果\(x\)不比\(a[i]\)小,就买下它,买不起就跳过. 给你 ...

  10. SLF4j 居然不是编译时绑定?日志又该如何正确的分文件输出?——原理与总结篇

    各位新年快乐,过了个新年,休(hua)息(shui)了三周,不过我又回来更新了,经过前面四篇想必小伙伴已经了解日志的使用以及最佳实践了,这个系列的文章也差不多要结束了,今天我们来总结一下. 概览 这篇 ...