NIO-BufferAPI
一 核心要素
- capacity (容量);不能为负,不可更改;就是buffer的长度(buffer.length)
- limit (限制);指第一个不可被读入缓冲区元素的位置;不可为负,若position大于limit,那么limit就是position;
- position (位置);指下一个被读入缓冲区元素的位置;不可为负,小于limit,默认索引由0开始;
- mark (标记);指在缓冲区设置标记;若调用reset()方法会回到position的位置;如果未设置mark调用reset()方法会报异常;如果positon或者limt小于mark时,mark被丢弃,其指为 -1;
各要素之间的关系:
0 <= mark <= position <= limit <= capacity
二 Buffer 架构体系
Buffer 是在多线程环境下是非安全操作,如果要在多线程情况下使用通常要加锁;Buffer 和其子类都是抽象类,其不能被实例化,需通过wrap(byte[] byte)方法来构建不同的缓冲区,具体的架构体系如下:
Object (java.lang)
-->Buffer (java.nio)
---->IntBuffer (java.nio)
---->FloatBuffer (java.nio)
---->CharBuffer (java.nio)
---->DoubleBuffer (java.nio)
---->ShortBuffer (java.nio)
---->LongBuffer (java.nio)
---->ByteBuffer (java.nio)
三 Buffer 方法介绍
Buffer 的子类完全实现了其父类的方法,所以本文示例都是使用其子类举例分析;
3.1 position()
int position() 方法是返回缓冲区的位置;
@Test
public void testPosition(){
byte[] bytes = {15,17,25,13,46,18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 获得位置
int position = wrap.position();
System.out.println(position);//0
// 设置位置
Buffer position1 = wrap.position(5);
//[pos=5 lim=6 cap=6]
System.out.println(position1);
}
3.2 limit()
int limit() 返回缓冲区的限制;如果 position > limit ,position就是limit,自行验证;
@Test
public void testLimit(){
byte[] bytes = {15,17,25,13,46,18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 获得限制
int limit = wrap.limit();
System.out.println(limit);//6
// 设置限制
Buffer limit1 = wrap.limit(3);
//[pos=0 lim=3 cap=6]
System.out.println(limit1);
// 输出缓冲区元素
for (int i=0; i<bytes.length; i++){
// 只输出 15 17 25 继续get会报 BufferUnderflowException
System.out.println(wrap.get());
}
}
3.3 mark()
Buffer mark() 设置缓冲区标记;如果未设置mark调用reset()会报 InvalidMarkException 异常,自行验证;
@Test
public void testMark() {
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 设置位置
wrap.position(1);
// 设置标记
wrap.mark();
// [pos=1 lim=6 cap=6]
System.out.println(wrap);
// 改变位置
wrap.position(4);
// 调用reset
wrap.reset();
// [pos=1 lim=6 cap=6]
System.out.println(wrap);
}
3.4 capacity()
int capacity() 返回缓冲区的容量,不可改变;
@Test
public void test(){
byte[] bytes = new byte[25];
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 获得缓冲区容量
int capacity = wrap.capacity();
// 25
System.out.println(capacity);
}
3.5 remaining()
int remaining() 返回当前位置和限制之间的大小;即 remaining = limit - position;
@Test
public void testRemaining() {
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 获得缓冲区的元素个数
int remaining = wrap.remaining();
// 6
System.out.println(remaining);
// 设置位置
wrap.position(1);
// 设置limit
wrap.limit(5);
// 重新获得缓冲区的元素个数
int remaining1 = wrap.remaining();
//4
System.out.println(remaining1);
}
3.6 isDirect()
abstract boolean isDirect() 判断该缓冲区是否是直接缓冲区;平常的缓冲区都是非直接缓冲区,即在jvm内部创建的缓冲区,我们调用Buffer相关的方法都会走jvm内部缓冲区,其性能不如直接缓存区快;直接缓冲区是指无需创建jvm内部缓冲区,直接跟计算级的内存空间交互,其速度较快;
@Test
public void testIsDirect() {
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 判断是否是直接缓冲区
boolean direct = wrap.isDirect();
// false
System.out.println(direct);
// 分配直接缓冲区
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(8);
boolean direct1 = byteBuffer.isDirect();
// true
System.out.println(direct1);
}
3.7 isReadOnly()
abstract boolean isReadOnly() 判断是否是只读缓冲区;
@Test
public void testIsDeadOnly() {
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 判断是否是只读缓冲区
boolean readOnly = wrap.isReadOnly();
// false
System.out.println(readOnly);
}
3.8 clean()
Buffer clear() 是还原缓冲区的初始状态,记住不是字面的意思清除缓冲区数据;
@Test
public void testClean() {
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
wrap.position(2);
wrap.limit(5);
// [pos=2 lim=5 cap=6]
System.out.println(wrap);
// 还原缓冲区状态
wrap.clear();
// [pos=0 lim=6 cap=6]
System.out.println(wrap);
}
其主要使用于重新写入数据至缓冲区;通常在通道read,put 操作之前调用为了填充缓冲区;
示例:
@Test
public void testClean2() {
CharBuffer wrap = CharBuffer.allocate(24);
wrap.put("youku1327");
wrap.clear();
wrap.put("知识追寻者");
wrap.rewind();
for (int i=0; i<wrap.limit();i++){
//知识追寻者1327
System.out.print(wrap.get());
}
}
源码:
public final Buffer clear() {
// 位置清0
position = 0;
// 调整限制等于容量
limit = capacity;
// 标记调整为默认值
mark = -1;
return this;
}
3.9 flip()
Buffer flip() 翻转缓冲区;不是字面意思上的将缓冲区的数据倒转,是指截取的意思;将限制设置为位置所在的当前值,将位置清0,如果有定义标记,则抛弃标记;
源码:
public final Buffer flip() {
// 将限制设置当前位置的值
limit = position;
// 位置清 0
position = 0;
// 抛弃标记
mark = -1;
return this;
}
示例:
@Test
public void testFilp() {
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
wrap.position(2);
wrap.mark();
// 翻转前 [pos=2 lim=6 cap=6]
System.out.println(wrap);
// 翻转
wrap.flip();
// 反正后 [pos=0 lim=2 cap=6]
System.out.println(wrap);
// 输出缓冲区元素
for (int i=0; i<wrap.limit(); i++){
// 15 17
System.out.println(wrap.get());
}
}
其通常在一系列 通道 put 或者 read 操作之后调用此方法为通道的write或者 get操作做准备;
示例:
@Test
public void testFilp2() {
CharBuffer wrap = CharBuffer.allocate(15);
wrap.put("公众号:知识追寻者");
// 翻转
wrap.flip();
for (int i=0; i<wrap.limit(); i++){
// 公众号:知识追寻着
System.out.print(wrap.get());
}
}
3.10 hasArray()
abstract boolean hasArray() 判断底层是否支持数组的实现;
@Test
public void testHasArray(){
// 间接缓存
ByteBuffer allocate = ByteBuffer.allocate(10);
boolean hasArray = allocate.hasArray();
// true
System.out.println(hasArray);
// 直接缓存
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(10);
boolean hasArray1 = byteBuffer.hasArray();
// false
System.out.println(hasArray1);
}
3.11 hasRemaining()
boolean hasRemaining() 判断 limit 和 position直接是否有元素;经常使用于缓冲区读取数据;
@Test
public void testHasRemaining(){
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
while (wrap.hasRemaining()){
// 15 17 25 13 46 18
System.out.println(wrap.get());
}
}
3.12 rewind()
Buffer rewind() 重绕缓冲区;其通常在通道write 或者 get 操作之前调用,为了重新读取数据;注意其限制不变;
源码:
public final Buffer rewind() {
// 位置设置为0
position = 0;
// 抛弃标记
mark = -1;
return this;
}
示例:
@Test
public void testRewind(){
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
while (wrap.hasRemaining()){
// 15 17 25 13 46 18
System.out.println(wrap.get());
}
// 重绕缓冲区
wrap.rewind();
while (wrap.hasRemaining()){
// 15 17 25 13 46 18
System.out.println(wrap.get());
}
}
3.13 arrayOffset()
abstract int arrayOffset() 返回写入缓冲区第一个元素的偏移,可选操作;
@Test
public void testOffset(){
byte[] bytes = {15, 17, 25, 13, 46, 18};
ByteBuffer wrap = ByteBuffer.wrap(bytes);
// 获得偏移
int arrayOffset = wrap.arrayOffset();
// 0
System.out.println(arrayOffset);
}
源码:
public final int arrayOffset() {
if (hb == null)
throw new UnsupportedOperationException();
if (isReadOnly)
throw new ReadOnlyBufferException();
return offset;
}
final int offset;
NIO-BufferAPI的更多相关文章
- Java NIO(2):缓冲区基础
缓冲区(Buffer)对象是面向块的I/O的基础,也是NIO的核心对象之一.在NIO中每一次I/O操作都离不开Buffer,每一次的读和写都是针对Buffer操作的.Buffer在实现上本质是一个数组 ...
- Java高并发网络编程(三)NIO
从Java 1.4开始,Java提供了新的非阻塞IO操作API,用意是替代Java IO和Java Networking相关的API. NIO中有三个核心组件: Buffer缓冲区 Channel通道 ...
- 源码分析netty服务器创建过程vs java nio服务器创建
1.Java NIO服务端创建 首先,我们通过一个时序图来看下如何创建一个NIO服务端并启动监听,接收多个客户端的连接,进行消息的异步读写. 示例代码(参考文献[2]): import java.io ...
- BIO\NIO\AIO记录
IO操作可以分为3类:同步阻塞(BIO).同步非阻塞(NIO).异步(AIO). 同步阻塞(BIO):在此种方式下,用户线程发起一个IO操作以后,必须等待IO操作的完成,只有当真正完成了IO操作以后, ...
- 支撑Java NIO 与 NodeJS的底层技术
支撑Java NIO 与 NodeJS的底层技术 众所周知在近几个版本的Java中增加了一些对Java NIO.NIO2的支持,与此同时NodeJS技术栈中最为人称道的优势之一就是其高性能IO,那么我 ...
- Java I/O and NIO [reproduced]
Java I/O and NIO.2---Five ways to maximize Java NIO and NIO.2---Build more responsive Java applicati ...
- JAVA NIO学习笔记1 - 架构简介
最近项目中遇到不少NIO相关知识,之前对这块接触得较少,算是我的一个盲区,打算花点时间学习,简单做一点个人学习总结. 简介 NIO(New IO)是JDK1.4以后推出的全新IO API,相比传统IO ...
- Java NIO概述
Java NIO 由以下几个核心部分组成: Channels Buffers Selectors 虽然 Java NIO 中除此之外还有很多类和组件,但在我看来,Channel,Buffer 和 Se ...
- JAVA NIO Socket通道
DatagramChannel和SocketChannel都实现定义读写功能,ServerSocketChannel不实现,只负责监听传入的连接,并建立新的SocketChannel,本身不传输数 ...
- JAVA NIO FileChannel 内存映射文件
文件通道总是阻塞式的. 文件通道不能创建,只能通过(RandomAccessFile.FileInputStream.FileOutputStream)getChannel()获得,具有与File ...
随机推荐
- Android中的内存管理机制以及正确的使用方式
概述 从操作系统的角度来说,内存就是一块数据存储区域,属于可被操作系统调度的资源.现代多任务(进程)的操作系统中,内存管理尤为重要,操作系统需要为每一个进程合理的分配内存资源,所以可以从两方面来理解操 ...
- 使用Beautiful Soup爬取猫眼TOP100的电影信息
使用Beautiful Soup爬取猫眼TOP100的电影信息,将排名.图片.电影名称.演员.时间.评分等信息,提取的结果以文件形式保存下来. import time import json impo ...
- 使用vim打开文件的16进制形式,编辑和全文替换
1.先用vim打开文件的二进制形式,如果不以二进制可能会产生转换错误. vim -b file-to-open.dat 2.用xxd把文件转换成十六进制格式 :%!xxd 现在就可以对待普通文本一样查 ...
- Windows Server多用户同时远程登录
因为工作需要,需要使用windwos作为一个远程登录跳板机,管理员对登录windwos机器再windwos的基础上连接别的机器,普通用户也可以连接windwos机器再连接别的机器,关于管理员普通用户连 ...
- c++ STL vector初步学习
/*vector(向量):是一种顺序容器,,动态数组,事实上和数组差不多,但它比数组更优越.一般来说数组不能动态拓展,因此在程序运行的时候不是浪费内存,就是造成越界.而vector正好弥补了这个缺陷, ...
- STL-priority_queue H - 看病要排队
H - 看病要排队 看病要排队这个是地球人都知道的常识.不过经过细心的0068的观察,他发现了医院里排队还是有讲究的.0068所去的医院有三个医生(汗,这么少)同时看病.而看病的人病情有轻重,所以不能 ...
- QuerySet的常用方法
QuerySet常用方法 使用 connection.queries 可以查看sql语句 filter 将满足条件的结果返回,返回值为QuerySet对象 exclude 将满足条件的结果过滤掉,返回 ...
- 使用在react hooks+antd ListView简单实现移动端长列表功能
import React, { useState, useEffect } from "react" import { ListView } from "antd-mob ...
- ASP.NET MVC4中对JS和CSS的引用
https://www.cnblogs.com/madyina/p/3702314.html ASP.NET MVC4中对JS和CSS的引用又做了一次变化,在MVC3中我们这样引用资源文件: < ...
- 线段树的树状数组大小为什么是4*maxn
以下方建树代码为例,r数组表述原始数据,t表述tree也就是树状数组 void make(int left,int right,int num)//创建线段树 { t[num].l=left; t[n ...