已知$0<x_1<c<x_2<e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,
证明:$c^2<x_1x_2$

由题意,结合拉格朗日中值定理知:$f^{'}(c)=\dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,其中$f(x)=\dfrac{\ln x}{x}$
$\because f^{''}(x)=\dfrac{2\ln x-3}{x^3}<0\therefore f^{'}(x)$单调递减.要证明$c^2<x_1x_2$只需证明:$f^{'}(c)>f^{'}(\sqrt{x_1x_2})$
即证明:$\dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}>\dfrac{1-\ln\sqrt{x_1x_2}}{x_1x_2}$化简得
$(x_1+x_2)\ln(x_2)-(x_1+x_2)\ln(x_1)>2(x_2-x_1)$,令$t=\dfrac{x_2}{x_1}>1$,即证:$\ln t>\dfrac{2(t-1)}{t+1}$易知成立.

MT【275】拉格朗日中值定理的更多相关文章

  1. 《University Calculus》-chape4-导数的应用-微分中值定理

    罗尔定理:如果函数f(x)在[a,b]上连续并且在(a,b)处处可微,并且有f(a) = f(b),则我们必然何以找到一个c∈(a,b),使得f’(c) = 0. 证明:我们从函数f(x)的最大值和最 ...

  2. MT【286】最佳有理逼近

    2017北大优秀中学生夏令营已知$\omega $是整系数方程$x^2+ax+b=0$的一个无理数根, 求证:存在常数$C$,使得对任意互质的正整数$p,q$都有$$|\omega-\dfrac{p} ...

  3. [数学]高数部分-Part III 中值定理与一元微分学应用

    Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...

  4. 广义Euler常数

    对于区间(a,b)内f''(x)>0 那么在该区间内函数的一阶导数对应切线在该区间内只与f(x)在切点相交 1. f''(x)>0那么可知 f'(x)在该区间内是单调增的 以下图为例,过( ...

  5. 关于L'Hopital法则

    1.首先需要使用 罗尔定理 函数f(x)在闭区间[a,b]连续在开区间(a,b)可微,如果f(a)=f(b),那么至少存在一点c使函数导数f'(c)=0 注意需要再(a,b)可微,如果函数有角点,断点 ...

  6. 完全搞懂傅里叶变换和小波(1)——总纲<转载>

    无论是学习信号处理,还是做图像.音视频处理方面的研究,你永远避不开的一个内容,就是傅里叶变换和小波.但是这两个东西其实并不容易弄懂,或者说其实是非常抽象和晦涩的! 完全搞懂傅里叶变换和小波,你至少需要 ...

  7. state estimation for robotics-1

    概率论是探讨SLAM的一个重要的工具,概率密度函数的概率意义在于它能够描述一个随机变量位于任意区间的概率. p(x<=x<=x+dx)≍p(x).dx(由拉格朗日中值定理)

  8. 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开

    咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...

  9. polynomial&generating function学习笔记

    生成函数 多项式 形如$\sum_{i=0}^{n}a_i x^i$的代数式称为n阶多项式 核函数 {ai}的核函数为f(x),它的生成函数为sigma(ai*f(i)*x^i) 生成函数的加减 {a ...

随机推荐

  1. 容器化 — 基于Docker技术容器云

    导读:本文介绍了基于Docker技术的企业级应用容器平台,从云的定义.云服务分类,到用友云PaaS基础平台.平台总体架构.架构预览.部署架构.平台核心价值和核心竞争力,阐述PaaS基础平台成为广大传统 ...

  2. Vue使用的一些实例

    1.实现歌曲的点击切换. <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  3. 在Linux添加PYTHONPATH方法以及修改环境变量方法

    Linux下设置环境变量有三种方法,一种用于当前终端,一种用于当前用户,一种用于所有用户: 一:用于当前终端: 在当前终端中输入: export PATH=$PATH:<你的要加入的路径> ...

  4. CentOS6.5配置 cron

    CentOS6.5配置 cron 任务 - mengjiaoduan的博客 - CSDN博客https://blog.csdn.net/mengjiaoduan/article/details/649 ...

  5. python--logging日志

    一个非常详细的日志使用请看这里:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html # 导入日志模块 import loggin ...

  6. Java 中的String、StringBuilder与StringBuffer的区别联系(转载)

    1 String 基础 想要了解一个类,最好的办法就是看这个类的源代码,String类源代码如下: public final class String implements java.io.Seria ...

  7. Chrome 使用绿色版实现同一个机器 打开多个不同的chrome版本

    1. 之前找了一个方案能够实现 多个chrome版本的 同时安装 但是发现不是很好. 2. 最近的一个办法 就是使用chrome的绿色版来实现 3. 下载地址: https://www.chrome6 ...

  8. js获取数组中相同元素数量

    <script> var array = new Array(1,2,5,1,4,4,2,3,5,1,1,5,5,5,6,7,3,9,9,10); var arr = new Array( ...

  9. MyBatis映射文件3(参数处理Map)

    参数命名 POJO 如果多个参数,正好是业务逻辑的数据模型,那么我们就可以直接传入POJO,这样#{}中就可以直接使用属性名 Map 如果多个参数不是业务逻辑的数据模型,没有对应的POJO,为了方便, ...

  10. app自动化测试Appium+python

    一.node.js安装 https://nodejs.org/en/download/ ##一直下一步 ###cmd查看 二.  .NET Framework安装 https://www.micros ...