MT【275】拉格朗日中值定理
已知$0<x_1<c<x_2<e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,
证明:$c^2<x_1x_2$

由题意,结合拉格朗日中值定理知:$f^{'}(c)=\dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,其中$f(x)=\dfrac{\ln x}{x}$
$\because f^{''}(x)=\dfrac{2\ln x-3}{x^3}<0\therefore f^{'}(x)$单调递减.要证明$c^2<x_1x_2$只需证明:$f^{'}(c)>f^{'}(\sqrt{x_1x_2})$
即证明:$\dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}>\dfrac{1-\ln\sqrt{x_1x_2}}{x_1x_2}$化简得
$(x_1+x_2)\ln(x_2)-(x_1+x_2)\ln(x_1)>2(x_2-x_1)$,令$t=\dfrac{x_2}{x_1}>1$,即证:$\ln t>\dfrac{2(t-1)}{t+1}$易知成立.
MT【275】拉格朗日中值定理的更多相关文章
- 《University Calculus》-chape4-导数的应用-微分中值定理
罗尔定理:如果函数f(x)在[a,b]上连续并且在(a,b)处处可微,并且有f(a) = f(b),则我们必然何以找到一个c∈(a,b),使得f’(c) = 0. 证明:我们从函数f(x)的最大值和最 ...
- MT【286】最佳有理逼近
2017北大优秀中学生夏令营已知$\omega $是整系数方程$x^2+ax+b=0$的一个无理数根, 求证:存在常数$C$,使得对任意互质的正整数$p,q$都有$$|\omega-\dfrac{p} ...
- [数学]高数部分-Part III 中值定理与一元微分学应用
Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...
- 广义Euler常数
对于区间(a,b)内f''(x)>0 那么在该区间内函数的一阶导数对应切线在该区间内只与f(x)在切点相交 1. f''(x)>0那么可知 f'(x)在该区间内是单调增的 以下图为例,过( ...
- 关于L'Hopital法则
1.首先需要使用 罗尔定理 函数f(x)在闭区间[a,b]连续在开区间(a,b)可微,如果f(a)=f(b),那么至少存在一点c使函数导数f'(c)=0 注意需要再(a,b)可微,如果函数有角点,断点 ...
- 完全搞懂傅里叶变换和小波(1)——总纲<转载>
无论是学习信号处理,还是做图像.音视频处理方面的研究,你永远避不开的一个内容,就是傅里叶变换和小波.但是这两个东西其实并不容易弄懂,或者说其实是非常抽象和晦涩的! 完全搞懂傅里叶变换和小波,你至少需要 ...
- state estimation for robotics-1
概率论是探讨SLAM的一个重要的工具,概率密度函数的概率意义在于它能够描述一个随机变量位于任意区间的概率. p(x<=x<=x+dx)≍p(x).dx(由拉格朗日中值定理)
- 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开
咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...
- polynomial&generating function学习笔记
生成函数 多项式 形如$\sum_{i=0}^{n}a_i x^i$的代数式称为n阶多项式 核函数 {ai}的核函数为f(x),它的生成函数为sigma(ai*f(i)*x^i) 生成函数的加减 {a ...
随机推荐
- [iOS]改变UIAlertController的标题、内容的字体和颜色
https://www.jianshu.com/p/51949eec2e9c 2016.03.23 22:36* 字数 272 阅读 37401评论 54喜欢 72 在开发中,弹出框是必不可少的,通常 ...
- Jenkins redeploy artifacts
jenkins redeploy artifacts 按钮 - 开源中国https://www.oschina.net/question/3045293_2247829 Jenkins 构建失败后通过 ...
- C#Note13:如何在C#中调用python
前言 IronPython 是一种在 .NET 及 Mono上的 Python 实现,由微软的 Jim Hugunin(同时也是 Jython 创造者) 所发起,是一个开源的项目,基于微软的 DLR ...
- 剑指offer(5)
题目: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 解法: 一个栈专门用来存数,当需要输出数时,把所有数倒到第二个栈,当然,若此时第二个栈中已经有数了(之前倒 ...
- github 操作
https://www.cnblogs.com/cxk1995/p/5800196.html 1在已有的GitHub账号下创建项目. 2将GitHub项目克隆到本地. git clone https ...
- llegalStateException: getWriter() has already been called for this response
我使用Springmvc的处理器进行向AJAX传值时出现的问题 当我使用 PrintWriter out = response.getWriter();out.print("用户不存在,请先 ...
- LAMP 版本查看
mysql 1 在终端下执行 mysql -V 2 mysql --help |grep Distrib 3 在mysql 里查看 select version() 4 在mysql 里查看 sta ...
- 浅谈基于Prism的软件系统的架构设计
很早就想写这么一篇文章来对近几年使用Prism框架来设计软件来做一次深入的分析了,但直到最近才开始整理,说到软件系统的设计这里面有太多的学问,只有经过大量的探索才能够设计出好的软件产品,就本人的理解, ...
- shell自定义输入输出 read+echo
自定义格式输入.输出(244) 输出:echo -e 解释转义字符 -n 回车不换行 \n 新的一行,等同于回车 \t 制表符 \r 回车 \b 回退 baskspace 删除键 演示\n \ ...
- Python OpenCV人脸识别案例
■环境 Python 3.6.0 Pycharm 2017.1.3 ■库.库的版本 OpenCV 3.4.1 (cp36) ■haarcascades下载 https://github.com/ope ...