「HNOI2016」最小公倍数
链接
一道阔爱的分块
题意
边权是二元组(A, B),每次询问u, v, a, b,求u到v是否存在一条简单路径,使得各边权上\(A_{max} = a, B_{max} = b\)
分析
对于这种有两种限制的题目
一般的套路就是条件按照第一种权值为关键字排序,询问按照第二种关键字排序
然后给条件分块,然后对于一个块只把第一关键字符合条件的询问放进去
在把当前块前面的整块里的点按照第二关键字排序
这样当前块前面的点都是符合当前询问点对于第一关建字条件的
而且第二关键字都是单调的,所以扫一下
然后对于每个询问,暴力处理一下当前块的贡献
[参考BeNoble_] (https://blog.csdn.net/benoble_/article/details/79777757)
对于这道题 如果暴力怎么做?
对于询问u, v, a, b
把所有满足A<= a, B <= b的边加进来
因为只要最大值,所以可以维护一个带权并查集(find的时候不更新father哦)
(小声:其实这个带权并查集就像一个树一样
然后查询一下是否连通,连通的话所在并查集最大权满不满足条件(即Amax == a && Bmax == b)
所以说,分块的本质都是暴力
然后复杂度就在这个加边上了
就像最前面说的那样加 加完把不整块的删了 okk
框架就像这样
询问按b排序 边按a排序
for(对于每一个块){
收集a大小在该块范围内的询问
按b排前面整块的点(这样后面就单调了
初始化并查集
for(对于每一个询问){
加前面整块里 b满足条件的边(a必然满足条件)
加不整块的a,b都满足条件的边
判定是否联通且满足条件
还原不整块的边
}
}
最后附上代码
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <set>
using namespace std;
const int N = 1e5 + 5;
int n, m, qsize;
struct E{
int u, v, a, b, id;
}e[N], q[N];
struct Opt{
int u, v, a, b, fa, size;
}opt[N];
bool ans[N];
int blsize;
int b[N], bcnt, tim;
int fa[N], mxa[N], mxb[N], size[N];
bool rulea(E x, E y){return x.a < y.a;}
bool ruleb(E x, E y){return x.b < y.b;}
int find(int x){
return x == fa[x] ? x : find(fa[x]);
}
inline void merge(E x, bool type){
x.u = find(x.u); x.v = find(x.v);
if(size[x.u] > size[x.v]) swap(x.u, x.v);
//printf("do %d %d %d\n", x.u, x.v, type);
if(type) {
++tim;
opt[tim].u = x.u, opt[tim].v = x.v; opt[tim].fa = fa[x.u];
opt[tim].a = mxa[x.v], opt[tim].b = mxb[x.v];
opt[tim].size = size[x.v];
}
if(find(x.u) == find(x.v)){
mxa[x.v] = max(mxa[x.v], x.a);
mxb[x.v] = max(mxb[x.v], x.b);
}
else {// u -> v
fa[x.u] = x.v;
size[x.v] += size[x.u];
mxa[x.v] = max(mxa[x.v], x.a);
mxb[x.v] = max(mxb[x.v], x.b);
mxa[x.v] = max(mxa[x.v], mxa[x.u]);
mxb[x.v] = max(mxb[x.v], mxb[x.u]);
}
}
inline void undo(){
while(tim){
// printf("undo %d %d\n", opt[tim].u, opt[tim].v);
fa[opt[tim].u] = opt[tim].fa;
mxa[opt[tim].v] = opt[tim].a;
mxb[opt[tim].v] = opt[tim].b;
size[opt[tim].v] = opt[tim].size;
--tim;
}
}
int main(){
scanf("%d%d", &n, &m);
blsize = sqrt(15 * m);//
for(int i = 1; i <= m; ++i){
scanf("%d%d%d%d", &e[i].u, &e[i].v, &e[i].a, &e[i].b);
}
sort(e + 1, e + m + 1, rulea);
scanf("%d", &qsize);
for(int i = 1; i <= qsize; ++i){
scanf("%d%d%d%d", &q[i].u, &q[i].v, &q[i].a, &q[i].b);
q[i].id = i;
}
sort(q + 1, q + qsize + 1, ruleb);
// for(int i = 1; i <= m; ++i)
// printf("%d %d %d %d\n", e[i].u, e[i].v, e[i].a, e[i].b);
for(int i = 1, lim; i <= m; i += blsize){
bcnt = 0;
lim = min(m, i + blsize - 1);
for(int j = 1; j <= qsize; ++j)
if(e[i].a <= q[j].a
&& (i + blsize > m || e[i + blsize].a > q[j].a))
b[++bcnt] = j;
sort(e + 1, e + i, ruleb);//这里排的是前面整块的点!
for(int j = 1; j <= n; ++j){
fa[j] = j, size[j] = 1, mxa[j] = mxb[j] = -1;
}
for(int j = 1, top = 1; j <= bcnt; ++j){
while(top < i && q[b[j]].b >= e[top].b){
//printf("mer %d 0\n");
merge(e[top], 0);
++top;
}
for(int k = i; k <= lim; ++k){
if(q[b[j]].a >= e[k].a && q[b[j]].b >= e[k].b){
merge(e[k], 1);
}
}
int x = find(q[b[j]].u), y = find(q[b[j]].v);
//printf("%d %d %d %d %d %d %d\n", q[b[j]].u, q[b[j]].v, q[b[j]].id, mxa[x], mxb[x], x, y);
ans[q[b[j]].id] = ((x == y) && (mxa[x] == q[b[j]].a) && (mxb[x] == q[b[j]].b));
undo();
}
}
for(int i = 1; i <= qsize; ++i)
if(ans[i]) printf("Yes\n");
else printf("No\n");
return 0;
}
「HNOI2016」最小公倍数的更多相关文章
- 「HNOI2016」最小公倍数 解题报告
「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...
- loj2048 「HNOI2016」最小公倍数
link 题意: 给定一张$N$个顶点$M$条边的无向图(顶点编号为$1,2,...,n$),每条边上带有权值.所有权值都可以分解成$2^a \cdot 3^b$的形式. 现在有$q$个询问,每次询问 ...
- LOJ #2048. 「HNOI2016」最小公倍数
题意 有 \(n\) 个点,\(m\) 条边,每条边连接 \(u \Leftrightarrow v\) 且权值为 \((a, b)\) . 共有 \(q\) 次询问,每次询问给出 \(u, v, q ...
- 「HNOI2016」数据结构大毒瘤
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直 ...
- 「HNOI2016」树 解题报告
「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...
- 「HNOI2016」序列 解题报告
「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...
- 「HNOI2016」网络 解题报告
「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...
- loj #2051. 「HNOI2016」序列
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na1,a2,⋯,an,记为 a[1: ...
- 【LOJ】#2052. 「HNOI2016」矿区
题解 之前尝试HNOI2016的时候弃坑的一道,然后给补回来 (为啥我一些计算几何就写得好长,不过我写啥都长orz) 我们尝试给这个平面图分域,好把这个平面图转成对偶图 怎么分呢,我今天也是第一次会 ...
随机推荐
- Springboot通过cors解决跨域问题(解决spring security oath2的/oauth/token跨域问题)
@Bean public CorsFilter corsFilter() { final UrlBasedCorsConfigurationSource source = new UrlBasedCo ...
- CodeForces Round #548 Div2
http://codeforces.com/contest/1139 A. Even Substrings You are given a string s=s1s2…sns=s1s2…sn of l ...
- 自签名证书 nginx tomcat
给Nginx配置一个自签名的SSL证书 - 廖雪峰的官方网站 https://www.liaoxuefeng.com/article/0014189023237367e8d42829de24b6eaf ...
- PyCharm3.0默认快捷键
PyCharm3.0默认快捷键(翻译的) 1.编辑(Editing) Ctrl + Space 基本的代码完成(类.方法.属性) Ctrl + Alt + Space 快速导入任意类 Ctrl + S ...
- 工程下CmakeLists.txt
2.工程下Cmake 本小节的任务是让上一小结的程序更像一个工程: 为工程添加一个子目录 src,用来放置工程源代码 : 添加一个子目录doc,用来放置这个工程的文档 hello.txt: 在工程目录 ...
- Oracle可视化工具PL/SQL Developer的安装与配置
安装程序: 安装目录不能有中文和空格,否则无法进行远程连接. 推荐使用 D:\PLSQLDeveloper 为安装目录 破解PLSQLDeveloper 使用工具 PLSQL Developer10. ...
- PhpStorm 头部注释、类注释和函数注释的设置
*设置位置:"Settings"->"file templates"; 如下图,设置头部注释.类注释以及函数注释,时间.用户名.文件名称等随机改变的属性, ...
- Linux基础学习笔记4-文本处理
本章内容 抽取文本的工具 文件内容:less和cat 文件截取:head和tail 按列抽取:cut 按关键字抽取:grep 文件查看 文件查看命令:cat,tac,rev cat [OPTION] ...
- python爬虫之初始scrapy
简介: Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设 ...
- Guava Cache源码详解
目录 一.引子 二.使用方法 2.1 CacheBuilder有3种失效重载模式 2.2 测试验证 三.源码剖析 3.1 简介 3.2 源码剖析 四.总结 优点: 缺点: 正文 回到顶部 一.引子 缓 ...