【HDU3595】GG and MM(博弈论)

题面

HDU

一个游戏由多个游戏组成,每次每个操作者必须操作所有可以操作的游戏,操作集合为空者输。

每个游戏由两堆石子组成,每次可以从较多的那一堆中取走较小那堆的数量的倍数个石子。

判断胜负。

题解

\(Every-SG\),所以我们只需要分开考虑两堆。

这题有点性质,假设两堆石子为\(x,y,x<y\),那么令\(k=\lfloor\frac{y}{x}\rfloor\)

如果\(k=1\),显然操作唯一,直接取反后继的\(sg\)函数即可。

如果\(k>1\),显然先手可以控制是把所有倍数都取完还是强制将\(k\)变成\(1\),让后手做一次确定操作,所有此时先手必胜,那么只需要考虑\(k=1\)时的后继状态的\(N/P\)情况,做出相应的抉择就好了。

同理维护\(step\)值即可。

最后判断\(step\)最大值来判定胜负情况。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1010
int n,m,sg[MAX][MAX],step[MAX][MAX];
int Getsg(int x,int y)
{
if(x>y)swap(x,y);
if(~sg[x][y])return sg[x][y];
if(!x||!y)return sg[x][y]=0;
int r=y%x,d=y/x;
if(d==1)
{
sg[x][y]=Getsg(r,x)^1;
step[x][y]=step[r][x]+1;
return sg[x][y];
}
else
{
step[x][y]=Getsg(r,x)+1+step[r][x];
return sg[x][y]=1;
}
}
int main()
{
memset(sg,-1,sizeof(sg));
ios::sync_with_stdio(false);
while(cin>>n)
{
int mx=0,a,b;
while(n--)
{
cin>>a>>b;if(a>b)swap(a,b);Getsg(a,b);
mx=max(mx,step[a][b]);
}
if(mx&1)cout<<"MM"<<endl;
else cout<<"GG"<<endl;
}
return 0;
}

【HDU3595】GG and MM(博弈论)的更多相关文章

  1. hdu 3595 GG and MM 博弈论

    同时进行,必须操作这就是Every-SG的特点 同样在贾志豪的论文中有提到这种游戏:组合游戏略述——浅谈SG游戏的若干拓展及变形 其中这个游戏特点不仅有必胜和必败,而且有时间长短的博弈,对于自己必胜的 ...

  2. GG and MM HDU - 3595 Every-SG

    $ \color{#0066ff}{ 题目描述 }$ 两堆石子,GG和MM轮流取,每次在一堆石子中取另一堆石子的k\((k\ge1)\)倍,不能操作的输 现在二人要玩n个这样的游戏,每回合每个人对每个 ...

  3. Java网络编程-你是GG还是MM?

    第六阶段 网络编程 每一台计算机通过网络连接起来,达到了数据互动的效果,而网络编程所解决的问题就是如何让程序与程序之间实现数据的通讯与互动 在吗?你是GG还是MM? (一) 网络模型概述 (1) 两大 ...

  4. HDU 3595 GG and MM [Every-SG]

    传送门 题意: 两个数$x,y$,一个人的决策为让大数减去小数的任意倍数(结果不能为负),出现0的人胜 一堆这样的游戏同时玩 Every-SG 游戏规定,对于还没有结束的单一游戏,游戏者必须对该游戏进 ...

  5. 博弈论与SG函数

    巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失 ...

  6. 博弈论题目总结(二)——SG组合游戏及变形

    SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...

  7. 博弈论BOSS

    基础博弈的小结:http://blog.csdn.net/acm_cxlove/article/details/7854530 经典翻硬币游戏小结:http://blog.csdn.net/acm_c ...

  8. 每一个可以移动的棋子都要移动——Every-SG 游戏

    先看一个问题 HDU 3595 GG and MM (Every_SG博弈) 题目有N个游戏同时进行,每个游戏有两堆石子,每次从个数多的堆中取走数量小的数量的整数倍的石子.取最后一次的获胜.并且N个游 ...

  9. Codeforces Round #324 (Div. 2) C (二分)

    题目链接:http://codeforces.com/contest/734/problem/C 题意: 玩一个游戏,一开始升一级需要t秒时间,现在有a, b两种魔法,两种魔法分别有m1, m2种效果 ...

随机推荐

  1. Linux模拟控制网络时延

    之前以为可以使用Linux自带的工具模拟控制网络时延,所以上网找了一些资料.后来发现,找到的资料目前只支持在一个网卡上模拟发送报文的时延,而不能设置有差别的网络时延,或者说当要模拟的向A发送的时延与要 ...

  2. Django异常问题之Error: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试。

    一般情况下,我们启动Django项目时默认设置的端口为8000,当你听着酷狗音乐敲着代码,启动Django项目时忽然翻车了. 不要慌,那是酷狗抢先一步占用了8000端口,解决这个问题的方式就是修改端口 ...

  3. Vue基本使用和指令集

    Vue的使用 一.安装 对于新手来说,强烈建议大家使用<script>引入: 二. 引入vue.js文件 我们能发现,引入vue.js文件之后,Vue被注册为一个全局的变量,它是一个构造函 ...

  4. CRM系统(第三部分)

      阅读目录 1.销售与客户的表结构 2.公共客户池 3.确认跟进 4.我的客户 5.code 1.销售与客户的表结构 1.公共客户与我的客户 ---公共客户(公共资源) 1.没有报名 2.3天没有跟 ...

  5. 福州大学软件工程1816 | W班 第3次作业成绩排名

    写在前面 汇总成绩排名链接 1.作业链接 第三次作业--原型设计(结对第一次) 2.评分准则 本次作业总分 25分,由以下部分组成: (1)在随笔开头请加上该博客链接,以方便阅读时查看作业需求,并备注 ...

  6. 前端开发之jQuery库

    使用jquery开发的时候,如果我们不想使用自己的jquery文件,那么可以引用现成的地址.方便日常开发使用 jquery-2.0以上版本 (注!不再支持IE 6/7/8) jquery-2.0.0百 ...

  7. Notepad++快捷使用

    用Notepad++写代码,要是有一些重复的代码想copy一下有木有简单的方法呢,确实还是有的不过也不算太好用.主要是应用键盘上的 Home 键 和 End 键.鼠标光标停留在一行的某处,按 Home ...

  8. java随笔3 spring 的注入执行逻辑顺序

  9. AdminLTE 前端框架

    适合运维平台  后台管理系统 AdminLTE 是一个开源的后台控制面板和仪表盘 WebApp 模板. 这是一个快速的HTML模板,基于CSS框架的引导. 文档: http://adminlte.la ...

  10. Java的HashMap数据结构

    标题太大~~~自己做点笔记.别人写得太好了. https://www.cnblogs.com/liwei2222/p/8013367.html HashMap 1.6时代, 使用Entry[]数组, ...