K-means算法的matlab程序

在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度。

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1.采用iris数据库

iris_data.txt

5.1    3.5    1.4    0.2
4.9 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
3.6 1.4 0.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 0.3
3.4 1.5 0.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 0.1
5.4 3.7 1.5 0.2
4.8 3.4 1.6 0.2
4.8 1.4 0.1
4.3 1.1 0.1
5.8 1.2 0.2
5.7 4.4 1.5 0.4
5.4 3.9 1.3 0.4
5.1 3.5 1.4 0.3
5.7 3.8 1.7 0.3
5.1 3.8 1.5 0.3
5.4 3.4 1.7 0.2
5.1 3.7 1.5 0.4
4.6 3.6 0.2
5.1 3.3 1.7 0.5
4.8 3.4 1.9 0.2
1.6 0.2
3.4 1.6 0.4
5.2 3.5 1.5 0.2
5.2 3.4 1.4 0.2
4.7 3.2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3.4 1.5 0.4
5.2 4.1 1.5 0.1
5.5 4.2 1.4 0.2
4.9 3.1 1.5 0.2
3.2 1.2 0.2
5.5 3.5 1.3 0.2
4.9 3.6 1.4 0.1
4.4 1.3 0.2
5.1 3.4 1.5 0.2
3.5 1.3 0.3
4.5 2.3 1.3 0.3
4.4 3.2 1.3 0.2
3.5 1.6 0.6
5.1 3.8 1.9 0.4
4.8 1.4 0.3
5.1 3.8 1.6 0.2
4.6 3.2 1.4 0.2
5.3 3.7 1.5 0.2
3.3 1.4 0.2
3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 1.3
6.5 2.8 4.6 1.5
5.7 2.8 4.5 1.3
6.3 3.3 4.7 1.6
4.9 2.4 3.3
6.6 2.9 4.6 1.3
5.2 2.7 3.9 1.4
3.5
5.9 4.2 1.5
2.2
6.1 2.9 4.7 1.4
5.6 2.9 3.6 1.3
6.7 3.1 4.4 1.4
5.6 4.5 1.5
5.8 2.7 4.1
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
6.1 2.8 1.3
6.3 2.5 4.9 1.5
6.1 2.8 4.7 1.2
6.4 2.9 4.3 1.3
6.6 4.4 1.4
6.8 2.8 4.8 1.4
6.7 1.7
2.9 4.5 1.5
5.7 2.6 3.5
5.5 2.4 3.8 1.1
5.5 2.4 3.7
5.8 2.7 3.9 1.2
2.7 5.1 1.6
5.4 4.5 1.5
3.4 4.5 1.6
6.7 3.1 4.7 1.5
6.3 2.3 4.4 1.3
5.6 4.1 1.3
5.5 2.5 1.3
5.5 2.6 4.4 1.2
6.1 4.6 1.4
5.8 2.6 1.2
2.3 3.3
5.6 2.7 4.2 1.3
5.7 4.2 1.2
5.7 2.9 4.2 1.3
6.2 2.9 4.3 1.3
5.1 2.5 1.1
5.7 2.8 4.1 1.3
6.3 3.3 2.5
5.8 2.7 5.1 1.9
7.1 5.9 2.1
6.3 2.9 5.6 1.8
6.5 5.8 2.2
7.6 6.6 2.1
4.9 2.5 4.5 1.7
7.3 2.9 6.3 1.8
6.7 2.5 5.8 1.8
7.2 3.6 6.1 2.5
6.5 3.2 5.1
6.4 2.7 5.3 1.9
6.8 5.5 2.1
5.7 2.5
5.8 2.8 5.1 2.4
6.4 3.2 5.3 2.3
6.5 5.5 1.8
7.7 3.8 6.7 2.2
7.7 2.6 6.9 2.3
2.2 1.5
6.9 3.2 5.7 2.3
5.6 2.8 4.9
7.7 2.8 6.7
6.3 2.7 4.9 1.8
6.7 3.3 5.7 2.1
7.2 3.2 1.8
6.2 2.8 4.8 1.8
6.1 4.9 1.8
6.4 2.8 5.6 2.1
7.2 5.8 1.6
7.4 2.8 6.1 1.9
7.9 3.8 6.4
6.4 2.8 5.6 2.2
6.3 2.8 5.1 1.5
6.1 2.6 5.6 1.4
7.7 6.1 2.3
6.3 3.4 5.6 2.4
6.4 3.1 5.5 1.8
4.8 1.8
6.9 3.1 5.4 2.1
6.7 3.1 5.6 2.4
6.9 3.1 5.1 2.3
5.8 2.7 5.1 1.9
6.8 3.2 5.9 2.3
6.7 3.3 5.7 2.5
6.7 5.2 2.3
6.3 2.5 1.9
6.5 5.2
6.2 3.4 5.4 2.3
5.9 5.1 1.8

iris_id.txt


2.matlab源程序:

My_Kmeans.m

function label_1=My_Kmeans(K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:聚类中心μ
format long
eps=1e-5; %定义迭代终止条件的eps
data=dlmread('E:\www.cnblogs.comkailugaji\data\iris\iris_data.txt');
%----------------------------------------------------------------------------------------------------
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
[X_num,~]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
para_miu_new=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
responsivity=zeros(X_num,K);
%----------------------------------------------------------------------------------------------------
%K-means算法
while true
para_miu=para_miu_new; %上一步的聚类中心
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*X*para_miu',矩阵大小为X_num*K
distant=repmat(sum(X.*X,2),1,K)+repmat(sum(para_miu.*para_miu,2)',X_num,1)-2*X*para_miu';
%返回distant每行最小值所在的下标
[~,label_1]=min(distant,[],2);
%构建隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
responsivity(i,j)=isequal(j,label_1(i));
end
end
R_k=sum(responsivity,1); %分母,第k类的个数,1*k的矩阵
para_miu_new=diag(1./R_k)*responsivity'*X; %更新参数miu(聚类中心)
if norm(para_miu_new-para_miu)<=eps
break;
end
end

Eg_Kmeans.m

function ave_acc_kmeans=Eg_Kmeans(K,max_iter)
%输入K:聚的类,max_iter是最大迭代次数
%输出ave_acc_kmeans:迭代max_iter次之后的平均准确度
s=0;
for i=1:max_iter
label_1=My_Kmeans(K);
accuracy=succeed(K,label_1);
s=s+accuracy;
end
ave_acc_kmeans=s/max_iter;

3.结果

>> ave_acc_kmeans=Eg_Kmeans(3,50)
ave_acc_kmeans =
0.842533333333333

K-means算法的matlab程序的更多相关文章

  1. ISODATA聚类算法的matlab程序

    ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...

  2. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  3. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  4. KFCM算法的matlab程序(用FCM初始化聚类中心)

    KFCM算法的matlab程序(用FCM初始化聚类中心) 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与 ...

  5. KFCM算法的matlab程序

    KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...

  6. FCM算法的matlab程序2

    FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...

  7. FCM算法的matlab程序

    FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  8. FCM算法的matlab程序(初步)

    FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  9. K-means算法的matlab程序(初步)

    K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...

随机推荐

  1. Multi-Model多模数据库引擎设计与实现

    如今,随着业务“互联网化”和“智能化”的发展以及架构 “微服务”和“云化”的发展,应用系统对数据的存储管理提出了新的标准和要求,数据的多样性成为了数据库平台面临的一大挑战,数据库领域也催生了一种新的主 ...

  2. 海量数据处理之BitMap

    有这样一种场景:一台普通PC,2G内存,要求处理一个包含40亿个不重复并且没有排过序的无符号的int整数,给出一个整数,问如果快速地判断这个整数是否在文件40亿个数据当中? 问题思考: 40亿个int ...

  3. asp.net core 2.1 配置管理

    1. 直接读取配置 StartUp类中使用 Configuration["ConnectionString"], Configuration["AliyunAkSk:Ak ...

  4. SpringBoot解决ajax跨域问题

    一.第一种方式: 1.编写一个支持跨域请求的 Configuration import org.springframework.context.annotation.Configuration; im ...

  5. php中的for 和foreach性能对比

    总体来说,如果数据库过几十万了,才能看出来快一点还是慢一点,如果低于10万的循环,就不用测试了,两者性差异不明显.但是我还是推荐用foreach.循环数字数组时,for需要事先count($arr)计 ...

  6. 【Linux】nginx常用命令

    相关内容链接 Centos之安装Nginx及注意事项 [nginx]详细配置说明 nginx常用命令 [重新加载配置]sudo nginx -s reload [打开nginx配置]sudo vim ...

  7. java过滤器(简化认证)

    最近在看过滤器,刚刚实现了过滤器的简化认证功能: 使用过滤器简化认证: 在Web应用程序中,过滤器的一个关键用例是保护应用程序不被未授权的用户访问.为跨国部件公司开发的客户支持应用程序使用了一种非常原 ...

  8. 面试官:你分析过mybatis工作原理吗?

    Mybatis工作原理也是面试的一大考点,必须要对其非常清晰,这样才能怼回去.本文建立在Spring+SpringMVC+Mybatis整合的项目之上. 我将其工作原理分为六个部分: 读取核心配置文件 ...

  9. Linq 操作DataTable

    class ClientStruct { public string ID = "ID"; public string Name = "Name"; publi ...

  10. JDK和Tomcat安装

    JDK安装: 1,选择安装位置,其余默认安装,安装两次,一个是JDK,一个是JRE,安装在两个文件夹中. 2,配置环境变量: 1,新建一个变量,变量名:JAVA_HOME,变量值:C:\Program ...