Java马士兵高并发编程视频学习笔记(二)
1.ReentrantLock的简单使用
Reentrant n.再进入
ReentrantLock 一个可重入互斥Lock具有与使用synchronized方法和语句访问的隐式监视锁相同的基本行为和语义,但具有扩展功能。(从jdk1.8中文版复制而来)
可以完成synchronized相同的作用,但必须手动释放锁
package com.dingyu2; import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* Reentrant n.再进入
* ReentrantLock 一个可重入互斥Lock具有与使用synchronized方法和语句访问的隐式监视锁相同的基本行为和语义,但具有扩展功能。(从jdk1.8中文版复制而来)
* 可以完成synchronized相同的作用,但必须手动释放锁
* @author dingyu
*
*/
public class ReentrantLock1 {
private Lock lock = new ReentrantLock(); public void m1() {
try {
lock.lock();//synchronized(this)类似,锁定的是堆的对象
for (int i = 0; i < 10; i++)
System.out.println("m1-" + i);
} catch (Exception e) {
System.out.println("m1启动"); } finally {
System.out.println("m1结束");
lock.unlock();
}
} public void m2() {
try {
lock.lock();
for (int i = 0; i < 10; i++)
System.out.println("m2-" + i); } catch (Exception e) {
System.out.println("m2启动"); } finally {
System.out.println("m2结束");
lock.unlock();
}
} public static void main(String[] args) {
ReentrantLock1 reentrantLock1 = new ReentrantLock1();
new Thread(() -> reentrantLock1.m1()).start();
new Thread(() -> reentrantLock1.m2()).start();
}
}
2.ReentrantLock对synchronized的扩展之tryLock()
package com.dingyu2; import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* ReentrantLock对synchronized的扩展之tryLock()
*
* @author dingyu
*
*/
public class ReentrantLock2 {
private Lock lock = new ReentrantLock(); public void m1() {
lock.lock();// 一直锁着,不手动释放, 和synchronized(this)类似,锁定的是堆的对象
} public void m2() {
boolean isNotLock = lock.tryLock();// 如果别的进程锁着就返回false,如果没锁返回true
// 我们可以根据有没有锁来执行自己的逻辑,而不需要等着锁的释放,更加灵活
if (isNotLock) {
System.out.println("lock对象没有被锁定");
} else {
System.out.println("lock对象被锁定了");
}
} public static void main(String[] args) {
ReentrantLock2 reentrantLock2 = new ReentrantLock2();
new Thread(() -> reentrantLock2.m1()).start();
new Thread(() -> reentrantLock2.m2()).start();
}
}
3.ReentranLock对synchronized的扩展:可以被另外的线程打断
package com.dingyu2; import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* ReentranLock对synchronized的扩展:可以被另外的线程打断
* 因为m1方法一直占着锁,m2永远不可能得到锁,既然得不到锁,我们就关闭m2好了,这时候得用lockInterruptibly
*
* @author dingyu
*
*/
public class ReentrantLock3 {
private Lock lock = new ReentrantLock(); public void m1() {
lock.lock();
try {
System.out.println("t1 start");
while (true) {
}
} finally {
lock.unlock();
System.out.println("t1 end");
}
} public void m2() {
try {
lock.lockInterruptibly();
System.out.println("t2 start");
} catch (InterruptedException e) {
System.out.println("t2被打断了");
} finally {
if (lock.tryLock())
lock.unlock();
System.out.println("t2 end");
}
} public static void main(String[] args) {
ReentrantLock3 reentrantLock3 = new ReentrantLock3();
Thread t1 = new Thread(() -> reentrantLock3.m1(), "t1");
t1.start();
Thread t2 = new Thread(() -> reentrantLock3.m2(), "t2");
t2.start();
t2.interrupt();
}
}
4.ReentrantLock对synchronized的扩展 : 可以指定公平锁
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* ReentrantLock对synchronized的扩展 : 可以指定公平锁,哪个线程等待时间长,哪个先执行
* 在构造函数中放入ture参数
*
* @author dingyu
*
*/
public class ReentrantLock4 {
private Lock lock = new ReentrantLock(true); public void m1() {
for (int i = 0; i < 10; i++) {
try {
lock.lock();
System.out.println(Thread.currentThread().getName() + "running");
} finally {
lock.unlock();
}
}
} public static void main(String[] args) {
ReentrantLock4 lock4 = new ReentrantLock4();
new Thread(()->lock4.m1(),"t1").start();
new Thread(()->lock4.m1(),"t2").start();
}
}
5.使用wait和notifyAll实现消费者生产者模式
package com.dingyu2; import java.util.LinkedList; /**
* 使用wait和notifyAll实现消费者生产者模式
*
* @author dingyu
*
*/
public class ProduceConsumer {
private final LinkedList<Integer> lists = new LinkedList<Integer>();
private final int MAX = 10;
private int count = 0; public synchronized void put(Integer i) {
while (lists.size() == MAX) { // wait大多数情况和while一起用
try {
this.wait();// 如果满了我就释放锁,并且等待
} catch (InterruptedException e) {
e.printStackTrace();
}
}
lists.add(i);// 生产一个
count++;
this.notifyAll();// 叫醒消费者可以消费啦
} public synchronized Integer get() {
while (lists.size() == 0) {
try {
this.wait();// 如果集合为空,不能消费,释放锁,等着
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Integer num = lists.removeFirst();
count--;
this.notifyAll();// 叫醒生产者,可以继续生产啦
return num;
} }
6.使用Condition 完成生产者消费者模式
package com.dingyu2;
/**
* 使用Condition 完成生产者消费者模式
* @author dingyu
*
*/ import java.util.LinkedList;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; public class ProduceConsumer2 {
private final LinkedList<Integer> lists = new LinkedList<Integer>();
private final int MAX = 10;
private int count = 0; private Lock lock = new ReentrantLock();
private Condition p = lock.newCondition();// 生产者
private Condition c = lock.newCondition();// 消费者 public void put(Integer i) {
try {
lock.lock();
while (lists.size() == MAX) {
try {
p.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
lists.add(i);
count++;
c.signalAll();
} finally {
lock.unlock();
}
} public Integer get() {
Integer i = null;
try {
lock.lock();
while (lists.size() == 0) {
try {
c.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
i = lists.removeFirst();
count++;
p.signalAll();
} finally {
lock.unlock();
}
return i;
} }
7.ThreadLocal 线程局部变量 每个线程中的这个变量归自己线程管
package com.dingyu;
public class ThreadLocal1 {
private ThreadLocal<Integer> tl = new ThreadLocal<Integer>();
public void m1() {
System.out.println(tl.get());
}
public void m2() {
tl.set(7898);
}
public static void main(String[] args) {
ThreadLocal1 local1 = new ThreadLocal1();
new Thread(() -> local1.m2()).start();
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
new Thread(() -> local1.m1()).start();
}
}
Java马士兵高并发编程视频学习笔记(二)的更多相关文章
- Java马士兵高并发编程视频学习笔记(一)
1.同一个资源,同步和非同步的方法可以同时调用 package com.dingyu; public class Y { public synchronized void m1() { System. ...
- 《Java虚拟机并发编程》学习笔记
对<Java虚拟机并发编程>这本书真的是相见恨晚.以前对并发编程只是懂个皮毛,这本书让我对并发编程有了一个全新的认识.所以把书上的知识点做下笔记,以便以后复习使用. 并发与并行 仔细说来, ...
- java 多线程——并发编程模型 学习笔记
并发编程模型 ...
- Java并发编程实战 读书笔记(二)
关于发布和逸出 并发编程实践中,this引用逃逸("this"escape)是指对象还没有构造完成,它的this引用就被发布出去了.这是危及到线程安全的,因为其他线程有可能通过这个 ...
- 《Java并发编程的艺术》第4章 Java并发编程基础 ——学习笔记
参考https://www.cnblogs.com/lilinzhiyu/p/8086235.html 4.1 线程简介 进程:操作系统在运行一个程序时,会为其创建一个进程. 线程:是进程的一个执行单 ...
- 《实战Java高并发程序设计》读书笔记二
第二章 Java并行程序基础 1.线程的基本操作 线程:进程是线程的容器,线程是轻量级进程,是程序执行的最小单位,使用多线程而不用多进程去进行并发程序设计是因为线程间的切换和调度的成本远远的小于进程 ...
- Go语言并发与并行学习笔记(二)
转:http://blog.csdn.net/kjfcpua/article/details/18265461 Go语言的并发和并行 不知道你有没有注意到一个现象,还是这段代码,如果我跑在两个goro ...
- java高并发编程(一)
读马士兵java高并发编程,引用他的代码,做个记录. 一.分析下面程序输出: /** * 分析一下这个程序的输出 * @author mashibing */ package yxxy.c_005; ...
- Java 面试知识点解析(二)——高并发编程篇
前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...
随机推荐
- SpringMVC 全局异常处理
在 JavaEE 项目的开发中,不管是对底层的数据库操作过程,还是业务层的处理过程,还是控制层的处理过程,都不可避免会遇到各种可预知的.不可预知的异常需要处理.每个过程都单独处理异常,系统的代码耦合度 ...
- Javascript高级编程学习笔记(83)—— 富文本选区(3)
富文本选区 在富文本编辑器中使用 iframe 的 getSelection() 方法可以获取选中的文本 该方法是 window 对象和 document 对象的属性,调用后会返回一个当前选选择文本的 ...
- Javascript高级编程学习笔记(53)—— DOM2和DOM3(5)遍历
遍历 “DOM2级遍历和范围” 定义了两个用于辅助完成顺序遍历的DOM结构类型 NodeIterator 和 TreeWalk 上述两种类型可以基于给定起点的DOM结构执行深度优先的遍历操作 对于检测 ...
- Kali学习笔记26:OWASP_ZAP
文章的格式也许不是很好看,也没有什么合理的顺序 完全是想到什么写一些什么,但各个方面都涵盖到了 能耐下心看的朋友欢迎一起学习,大牛和杠精们请绕道 OWASP_ZAP扫描器不同于之前介绍的Web扫描器: ...
- SpringMVC FistMVC详解
实现一个简单的SpringMVC框架的配置 1.依赖 这是mybatis+spring+现在需要的依赖 <dependency> <groupId>junit</grou ...
- Static了解和复习继承。
Static了解 static加在局部变量的前面改变其存储类型使之成为静态局部变量,会延长它的生存周期,但是不会改变其作用域. 静态成员是属于类的,而不是属于某个对象的.即便没有任何一个实例,类的静态 ...
- pyengine介绍及使用
一个可以通过HTTP请求动态执行Python 代码的HTTP服务器,还自带一个装饰器来执行时间较长的任务. 使用方法 1 pip install pyengine 2 pyengine run -d ...
- 好玩的原生js的简单拖拽
这个拖拽的图片不是唯一的,拿到代码自己添加一张照片就可以啦 <!DOCTYPE html><html> <head> <meta charset=" ...
- Xamarin.Android 嵌入web端界面
在程序中嵌入Web端界面. 首先在前台界面上创建一个webview <android.webkit.WebView android:layout_width="match_parent ...
- 实现quartz定时器及quartz定时器原理介绍
今天研究定时器,在网上看了一篇不错的文章,推荐给大家! 实现quartz定时器及quartz定时器原理介绍