这次wer由15%下降到0%了,后面跑更多的模型

LOG (apply-cmvn[5.2.124~1396-70748]:main():apply-cmvn.cc:162) Applied cepstral mean normalization to 20 utterances, errors on 0
200_001_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_001 is -9.06026 over 118 frames.
200_001_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_002 is -9.0791 over 87 frames.
200_001_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_003 is -8.72467 over 121 frames.
200_001_004 cappuccino
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_004 is -9.11234 over 83 frames.
200_001_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_005 is -9.0466 over 120 frames.
200_001_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_006 is -8.86214 over 116 frames.
200_001_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_007 is -10.095 over 94 frames.
200_001_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_008 is -9.39383 over 46 frames.
200_001_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_009 is -9.29525 over 68 frames.
200_001_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_010 is -9.45605 over 73 frames.
200_002_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_001 is -8.823 over 99 frames.
200_002_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_002 is -8.86786 over 85 frames.
200_002_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_003 is -9.15775 over 123 frames.
200_002_004 cappuccino
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_004 is -9.08465 over 75 frames.
200_002_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_005 is -8.55999 over 117 frames.
200_002_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_006 is -9.36011 over 110 frames.
200_002_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_007 is -9.99029 over 64 frames.
200_002_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_008 is -9.46437 over 77 frames.
200_002_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_009 is -10.0669 over 51 frames.
200_002_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_010 is -9.69364 over 69 frames.
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:176) Time taken 0.457478s: real-time factor assuming 100 frames/sec is 0.0254721
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:179) Done 20 utterances, failed for 0
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:181) Overall log-likelihood per frame is -9.18962 over 1796 frames.
# Accounting: time=0 threads=1
# Ended (code 0) at Fri Oct 13 11:22:18 CST 2017, elapsed time 0 seconds

如何用kaldi做孤立词识别三的更多相关文章

  1. 如何用kaldi做孤立词识别-初版

    ---------------------------------------------------------------------------------------------------- ...

  2. 如何用kaldi做孤立词识别二

    基本模型没有变化,主要是调参,配置: %WER     65%  下降到了     15% 后面再继续优化... Graph compilation finish!steps/decode.sh -- ...

  3. 基于HTK语音工具包进行孤立词识别的使用教程

    选自:http://my.oschina.net/jamesju/blog/116151 1前言 最近一直在研究HTK语音识别工具包,前几天完成了工具包的安装编译和测试,这几天又按耐不住好奇,决定自己 ...

  4. 机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)

    最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量.观察变量和实际问题中变量的对应关系, ...

  5. yesno孤立词识别kaldi脚本

    path.sh主要设定路径等 export KALDI_ROOT=`pwd`/../../.. [ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ ...

  6. 使用CRF做命名实体识别(三)

    摘要 本文主要是对近期做的命名实体识别做一个总结,会给出构造一个特征的大概思路,以及对比所有构造的特征对结构的影响.先给出我最近做出来的特征对比: 目录 整体操作流程 特征的构造思路 用CRF++训练 ...

  7. 亲自动手用HTK实现YES NO孤立词识别

    很久以前的发在研学论坛的帖子了,再重新整理了一下,希望对新手有用. 完整版链接:http://yun.baidu.com/s/1hapcE 第一步 创建语音文件 录音 命令:HSLab any_nam ...

  8. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  9. 用CRF做命名实体识别(一)

    用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...

随机推荐

  1. 毕设之iframe跳转子页面问题

    我的Django项目中的index.html分为三个层次,head.body.footer.其中body细分为left和right两部分,right的地图是使用iframe嵌入的map.html页面, ...

  2. mycat使用之MySQL单库分表及均分数据

    转载自 https://blog.csdn.net/smilefyx/article/details/72810531 1.首先在Mycat官网下载安装包,这里就以最新的1.6版本为例,下载地址为:  ...

  3. [转]tomcat启动报错too low setting for -Xss

    tomcat启动报错too low setting for -Xss 网上给的答案都是调整Xss参数,其实不是正确的做法, -Xss:每个线程的Stack大小,“-Xss 15120” 这使得tomc ...

  4. 1004: [HNOI2008]Cards - burnside + DP

    Description 小春现在很清闲, 面对书桌上的 \(N\) 张牌, 他决定给每张染色, 目前小春只有 \(3\) 种颜色: 红色, 蓝色, 绿色. 他询问 Sun 有 多少种染色方案, Sun ...

  5. Python之路(第三十八篇) 并发编程:进程同步锁/互斥锁、信号量、事件、队列、生产者消费者模型

    一.进程锁(同步锁/互斥锁) 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理. 例 ...

  6. 安装jdk1.8导致eclipse显示问题

    安装jdk1.8后新建workspace(mars)后eclipse的toolbar和主题显示有问题 例如: 修改步骤 1.设置主题window->Preferences->General ...

  7. JSP:getOutputStream() has already been called for this response

    JSP页面,用小脚本显示一张图片 <%@page import="java.io.OutputStream"%> <%@page import="jav ...

  8. [C#.net]SQL参数传入空值报错解决方案

    C#中的null与SQL中的NULL是不一样的,SQL中的NULL用C#表示出来就是DBNull.Value. 注意:SQL参数是不能接受C#的null值的,传入null就会报错. SqlComman ...

  9. oracle 数据定义语言(DDL)语法

    DDL语言包括数据库对象的创建(create).删除(drop)和修改(alter)的操作 1.创建表语法 create table table_name( column_name datatype  ...

  10. Git的安装和使用

    在CentOS 6.x/7.x上安装git及最新版 方式一.yum安装 # yum install git 通过yum方式安装,版本比较旧,CentOS6.5上安装好是1.7.1版.如果想安装最新版或 ...