这次wer由15%下降到0%了,后面跑更多的模型

LOG (apply-cmvn[5.2.124~1396-70748]:main():apply-cmvn.cc:162) Applied cepstral mean normalization to 20 utterances, errors on 0
200_001_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_001 is -9.06026 over 118 frames.
200_001_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_002 is -9.0791 over 87 frames.
200_001_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_003 is -8.72467 over 121 frames.
200_001_004 cappuccino
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_004 is -9.11234 over 83 frames.
200_001_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_005 is -9.0466 over 120 frames.
200_001_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_006 is -8.86214 over 116 frames.
200_001_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_007 is -10.095 over 94 frames.
200_001_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_008 is -9.39383 over 46 frames.
200_001_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_009 is -9.29525 over 68 frames.
200_001_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_010 is -9.45605 over 73 frames.
200_002_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_001 is -8.823 over 99 frames.
200_002_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_002 is -8.86786 over 85 frames.
200_002_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_003 is -9.15775 over 123 frames.
200_002_004 cappuccino
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_004 is -9.08465 over 75 frames.
200_002_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_005 is -8.55999 over 117 frames.
200_002_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_006 is -9.36011 over 110 frames.
200_002_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_007 is -9.99029 over 64 frames.
200_002_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_008 is -9.46437 over 77 frames.
200_002_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_009 is -10.0669 over 51 frames.
200_002_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_010 is -9.69364 over 69 frames.
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:176) Time taken 0.457478s: real-time factor assuming 100 frames/sec is 0.0254721
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:179) Done 20 utterances, failed for 0
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:181) Overall log-likelihood per frame is -9.18962 over 1796 frames.
# Accounting: time=0 threads=1
# Ended (code 0) at Fri Oct 13 11:22:18 CST 2017, elapsed time 0 seconds

如何用kaldi做孤立词识别三的更多相关文章

  1. 如何用kaldi做孤立词识别-初版

    ---------------------------------------------------------------------------------------------------- ...

  2. 如何用kaldi做孤立词识别二

    基本模型没有变化,主要是调参,配置: %WER     65%  下降到了     15% 后面再继续优化... Graph compilation finish!steps/decode.sh -- ...

  3. 基于HTK语音工具包进行孤立词识别的使用教程

    选自:http://my.oschina.net/jamesju/blog/116151 1前言 最近一直在研究HTK语音识别工具包,前几天完成了工具包的安装编译和测试,这几天又按耐不住好奇,决定自己 ...

  4. 机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)

    最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量.观察变量和实际问题中变量的对应关系, ...

  5. yesno孤立词识别kaldi脚本

    path.sh主要设定路径等 export KALDI_ROOT=`pwd`/../../.. [ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ ...

  6. 使用CRF做命名实体识别(三)

    摘要 本文主要是对近期做的命名实体识别做一个总结,会给出构造一个特征的大概思路,以及对比所有构造的特征对结构的影响.先给出我最近做出来的特征对比: 目录 整体操作流程 特征的构造思路 用CRF++训练 ...

  7. 亲自动手用HTK实现YES NO孤立词识别

    很久以前的发在研学论坛的帖子了,再重新整理了一下,希望对新手有用. 完整版链接:http://yun.baidu.com/s/1hapcE 第一步 创建语音文件 录音 命令:HSLab any_nam ...

  8. 用CRF做命名实体识别(二)

    用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...

  9. 用CRF做命名实体识别(一)

    用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...

随机推荐

  1. easyUI添加修改tab页(toolbar)

    代码: <div id="editdialos" class="easyui-dialog" title="虚机配置修改" data- ...

  2. JavaScript并发模型与Event Loop (转载)

    并发模型可视化描述 model.svg 如上图所示,Javascript执行引擎的主线程运行的时候,产生堆(heap)和栈(stack),程序中代码依次进入栈中等待执行, 若执行时遇到异步方法,该异步 ...

  3. V2019 Super DSP3 Odometer Correction Vehicle List

    Comparing v2017 Super DSP3 mileage programmer, the newest V2019 Super DSP III adds newer vehicles, i ...

  4. View操作 swift

    //创建View let view1 =UIView() let view2 =UIView(frame: CGRectMake(,, ,)) let view3 =UIView(frame: CGR ...

  5. .net webapi 接收 xml 格式数据的三种情况

    webapi 接收 xml 的三种方法 前段时间接到一个任务写一个小接口,要接收java端返回过来的短信xml数据. 刚拿到项目,我的第一想法是对方会以什么形式发送xml格式的数据给我呢,设想三种情况 ...

  6. SQL Injection-Http请求的参数中对特殊字符的处理

    1.背景:最近学习webgoat到了SQL Injection的这一课,要完成这一课需要拦截Http请求,修改参数,不过在修改的参数中加入特殊字符才能完成.下面让我们一起来学习吧. 2.题目: 大致翻 ...

  7. 利用idea解决git代码冲突问题

    问题描述:在开发过程中,如果你开发的代码与其他人造成冲突,在不处理的情况下会无法拉取,并且提交容易造成代码丢失: 解决方法: [此方法是同事郭富城的分享] 1,由于冲突,我们每次拉取都会失败,这时我们 ...

  8. OO第二单元单元总结

    总述 OO的第二单元主题是电梯调度,与第一单元注重对数据的输入输出的处理.性能的优化不同,第二单元的重心更多的是在线程安全与线程通信上.这此次单元实验之前,我并未对线程有过了解,更谈不上“使用经验”, ...

  9. 如何创建并初始化程序集里List类型的反射

    参考网址:http://stackoverflow.com/questions/315231/using-reflection-to-set-a-property-with-a-type-of-lis ...

  10. Linux下mysql定时自动备份并FTP到远程脚本

    1.添加backupmysqleveryday.sh(vi /data/shell/backupmysqleveryday.sh) #!/bin/sh #this shell is user for ...