【bzoj 4756】[Usaco2017 Jan] Promotion Counting
Description
The cows have once again tried to form a startup company, failing to remember from past experience that cows make terrible managers!The cows, conveniently numbered 1…N1…N (1≤N≤100,000), organize the company as a tree, with cow 1 as the president (the root of the tree). Each cow except the president has a single manager (its "parent" in the tree). Each cow ii has a distinct proficiency rating, p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a manager of a manager) of cow jj, then we say jj is a subordinate of ii.
Unfortunately, the cows find that it is often the case that a manager has less proficiency than several of her subordinates, in which case the manager should consider promoting some of her subordinates. Your task is to help the cows figure out when this is happening. For each cow ii in the company, please count the number of subordinates jj where p(j)>p(i).
n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。
问对于每个奶牛来说,它的子树中有几个能力值比它大的。
Input
The first line of input contains N
The next N lines of input contain the proficiency ratings p(1)…p(N) for the cows. Each is a distinct integer in the range 1…1,000,000,000.The next N-1 lines describe the manager (parent) for cows 2…N.Recall that cow 1 has no manager, being the president.
n,表示有几只奶牛 n<=100000
接下来n行为1-n号奶牛的能力值pi
接下来n-1行为2-n号奶牛的经理(树中的父亲)
Output
Please print N lines of output. The ith line of output should tell the number of subordinates of cow ii with higher proficiency than cow i.
共n行,每行输出奶牛i的下属中有几个能力值比i大
Sample Input
5
804289384
846930887
681692778
714636916
957747794
1
1
2
3
Sample Output
2
0
1
0
0
大概是线段树合并的裸题……?
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=1e5+;
int n,cnt,tot;
int id[N],p[N],fa[N],first[N],ans[N],root[N];
int ls[N*],rs[N*],tr[N*];
struct edge{int to,next;}e[N];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void ins(int u,int v){e[++tot]=(edge){v,first[u]};first[u]=tot;}
void insert(int l,int r,int& pos,int num,int w)
{
pos=++cnt;tr[pos]+=w;
if(l==r)return;
int mid=(l+r)>>;
if(num<=mid)insert(l,mid,ls[pos],num,w);
else insert(mid+,r,rs[pos],num,w);
}
int merge(int now,int last)
{
if(!now||!last)return now^last;//子树为空就直接并上去
ls[now]=merge(ls[now],ls[last]);
rs[now]=merge(rs[now],rs[last]);
tr[now]=tr[ls[now]]+tr[rs[now]];
return now;
}
int query(int l,int r,int pos,int L,int R)
{
if(L<=l&&R>=r)return tr[pos];
int sum=,mid=(l+r)>>;
if(L<=mid)sum+=query(l,mid,ls[pos],L,R);
if(R>mid)sum+=query(mid+,r,rs[pos],L,R);
return sum;
}
void dfs(int x)
{
insert(,n,root[x],id[x],);
for(int i=first[x];i;i=e[i].next)dfs(e[i].to);
for(int i=first[x];i;i=e[i].next)root[x]=merge(root[x],root[e[i].to]);
ans[x]=query(,n,root[x],id[x]+,n);
}
int main()
{
n=read();
for(int i=;i<=n;i++)id[i]=p[i]=read();
sort(p+,p+n+);
for(int i=;i<=n;i++)id[i]=lower_bound(p+,p+n+,id[i])-p;
for(int i=;i<=n;i++)fa[i]=read(),ins(fa[i],i);
dfs();
for(int i=;i<=n;i++)printf("%d\n",ans[i]);
return ;
}
【bzoj 4756】[Usaco2017 Jan] Promotion Counting的更多相关文章
- 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组
原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...
- [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组
4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 305 Solved: ...
- BZOJ 4756 [Usaco2017 Jan]Promotion Counting(线段树合并)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题目大意] 给出一棵树,对于每个节点,求其子树中比父节点大的点个数 [题解] ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- 【BZOJ】4756: [Usaco2017 Jan]Promotion Counting
[题意]带点权树,统计每个结点子树内点权比它大的结点数. [算法]线段树合并 [题解]对每个点建权值线段树(动态开点),DFS中将自身和儿子线段树合并后统计. 注意三个量tot,cnt,tots,细心 ...
- bzoj 4756: [Usaco2017 Jan]Promotion Counting【dfs+树状数组】
思路还是挺好玩的 首先简单粗暴的想法是dfs然后用离散化权值树状数组维护,但是这样有个问题就是这个全局的权值树状数组里并不一定都是当前点子树里的 第一反应是改树状数组,但是显然不太现实,但是可以这样想 ...
- bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...
- 【dsu || 线段树合并】bzoj4756: [Usaco2017 Jan]Promotion Counting
调半天原来是dsu写不熟 Description The cows have once again tried to form a startup company, failing to rememb ...
- BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并
题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...
随机推荐
- multimap多重映照容器
//multimap的基本用法 #include<map> #include<iostream> #include<string> using namespace ...
- OpenLayers学习笔记(四)— QML显示html中openlayers地图的坐标
GitHub:八至 作者:狐狸家的鱼 本文链接:实现QML中显示html中地图的坐标 如何QML与HTML通信已经在这篇文章 QML与HTML通信之画图 详细讲述了 1.HTML var coord; ...
- 洛谷P2414 阿狸的打字机
题意:以trie的形式给出n个字符串,每次询问第x个字符串在第y个字符串中出现了几次. 解:总串长是n2级别的,所以不能用什么后缀自动机... [update]可以建triesam但是不知道trie上 ...
- 小R的树(权限题)
解:考场上爆0了...... 回想怎么求两个排列的最长公共子序列. 回想怎么求1~n每个数恰出现两次的两个序列的最长公共子序列.就是每个数替换为它在另一个序列里的出现位置,降序. 所以我们可以把这每个 ...
- Python之函数--命名空间、作用域、global、nonlocal、函数的嵌套和作用域链
命名空间 -------‘’存放名字与值的关系”的空间 代码在运行伊始,创建的存储“变量名与值的关系”的空间叫做全局命名空间: 在函数的运行中开辟的临时的空间叫做局部命名空间. 命名空间一共分为三种: ...
- 手机nv
NV值是记录手机的射频参数的,和手机的IMEI号.手机信号.WIFI信号等有关,如果NV值刷没了,手机没有这些校准的数据了,会对手机有一定的影响. qcn里面包含手机的imei 所有改变imei就改变 ...
- HTML学习笔记Day5
一.CSS属性 1.文本溢出是否“...”显示属性:text-overflow:clip(不显示省略标记)/ellipsis(文本溢出时“...”显示) 定义此属性有四个必要条件:1)须有容器宽度:w ...
- SqlAlchenmy基本使用
#简单查询 print(session.query(User).all()) print(session.query(User.name, User.fullname).all()) print(se ...
- CodeForces160D 最小生成树 + dfs
https://cn.vjudge.net/problem/26727/origin 题目大意: 给一个带权的无向图,保证没有自环和重边. 由于最小生成树不唯一,因此你需要确定每一条边是以下三种情况哪 ...
- 怎么正确的回滚git的代码?
1. git reflog或者git log查看到节点的hash值 2. git reset滚回某个节点 1)如果想保留当前的代码用 git reset --mixed ${Hash} 2)如果想联通 ...