一个很显然的DP方程式:f[i]=Σf[j],其中j<i且在[j+1,i]中出现1次的数不超过k个

乍一看挺神仙的,只会O(n^2),就是对于每个位置从后向前扫一遍,边扫边统计出现1次的数的个数。不难发现,同一个数第一次出现时cnt++,第二次出现时cnt--,后面没有变化这不是废话吗?!

于是可以考虑记录一个后缀和,s[i]表示cnt的大小,然后从当前位置开始从右向左第一次出现的值为1,第二次出现的值为-1,之后为0。修改记录lst数组表示该数上次的位置即可。然后每次走一步只对一个数产生影响,就是只对两段的s值产生影响,线段树显然不能够维护一段某个值出现的次数(实际可能能够用高级数据结构但我不会),于是可以采用暴力美学:分块!

对每一块打个标记delta[i]表示块i的变化量(整体增减才计入),cnt[i]表示位置i进行单独修改后的值,sum[i][j]表示第i个块为值为j的f值之和。暴力修改,复杂度O(n^1.5),可以通过。

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+7,mod=998244353;
int n,m,B,a[N],pos[N],bel[N],lst[N],f[N],cnt[N],delta[440],ans[440],sum[440][N];
void update(int u,int v)
{
int t=bel[u];
sum[t][cnt[u]]=(sum[t][cnt[u]]-f[u]+mod)%mod;
if(cnt[u]+delta[t]<=m)ans[t]=(ans[t]-f[u]+mod)%mod;
cnt[u]+=v;
sum[t][cnt[u]]=(sum[t][cnt[u]]+f[u])%mod;
if(cnt[u]+delta[t]<=m)ans[t]=(ans[t]+f[u])%mod;
}
void add(int u,int v,int w)
{
if(u>v)return;
int p=bel[u],q=bel[v];
if(p+1>=q)
{
for(int i=u;i<=v;i++)update(i,w);
return;
}
for(int i=u;bel[i]==p;i++)update(i,w);
for(int i=v;bel[i]==q;i--)update(i,w);
for(int i=p+1;i<q;i++)
{
if(w>0)if(m-delta[i]>=0)ans[i]=(ans[i]-sum[i][m-delta[i]]+mod)%mod;
delta[i]+=w;
if(w<0)if(m-delta[i]>=0)ans[i]=(ans[i]+sum[i][m-delta[i]])%mod;
}
} int main()
{
scanf("%d%d",&n,&m);
B=sqrt(n);
bel[0]=1;
for(int i=1;i<=n;i++)scanf("%d",&a[i]),bel[i]=i/B+1;
f[0]=sum[1][0]=ans[1]=1;
for(int i=1;i<=n;i++)
{
lst[i]=pos[a[i]];
add(lst[lst[i]],lst[i]-1,-1);
add(lst[i],i-1,1);
int j=i-1;
for(int j=i-1;j>=0&&bel[i]==bel[j];j--)
if(cnt[j]+delta[bel[i]]<=m)f[i]=(f[i]+f[j])%mod;
for(int j=bel[i]-1;j;j--)f[i]=(f[i]+ans[j])%mod;
sum[bel[i]][0]=(sum[bel[i]][0]+f[i])%mod;
if(delta[bel[i]]<=m)ans[bel[i]]=(ans[bel[i]]+f[i])%mod;
pos[a[i]]=i;
}
printf("%d",f[n]);
}

  

CF1129D Isolation(分块+DP)的更多相关文章

  1. Codeforces Round #278 (Div. 1) D - Conveyor Belts 分块+dp

    D - Conveyor Belts 思路:分块dp, 对于修改将对应的块再dp一次. #include<bits/stdc++.h> #define LL long long #defi ...

  2. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  3. [CSP-S模拟测试]:旅行计划(分块+DP)

    题目传送门(内部题83) 输入格式 第一行两个整数$n,m$ 接下来$m$行,每行三个整数,$u,v,w$,表示从$u$到$v$有一条权值为$w$的边 接下来一行有一个整数$q$,表示$q$天 接下来 ...

  4. CodeForces 103D Time to Raid Cowavans 分块+dp

    先对b从小到大sort,判断b是不是比sqrt(n)大,是的话就直接暴力,不是的话就用dp维护一下 dp[i]表示以nb为等差,i为起点的答案,可以节省nb相同的情况 #include<bits ...

  5. hdu6331 /// Floyd+分块DP

    题目大意: 给定单向图的n m 为点数和单向边数 接下来m行给定 u v w 为边的起点终点和长度 给定q 为询问个数 接下来q行给定 x y k 求从x到y至少经过k条边的最短路长度 https:/ ...

  6. P5343 【XR-1】分块(dp矩阵加速)

    \(大意是用数组a里的数字,组成一个序列,使得序列和为n的方案种数\)传送门 \(先考虑dp.\) \(但是不能直接用背包转移,因为是序列,要考虑顺序.\) \(所以,为了去重,我们令dp[i][j] ...

  7. 多校联训 DS 专题

    CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...

  8. 51Nod1957 有限背包计数问题

    传送门 另一个传送门 这题还挺有意思…… 先贴一波出题人的题解…… (啥你说你看不见?看来你还没过啊,等着A了再看或者乖乖花点头盾好了……) 然后是我的做法……思想都是一样的,只是细节不一样而已…… ...

  9. 51Nod-1259-整数划分 V2

    51Nod-1259-整数划分 V2 将N分为若干个整数的和,有多少种不同的划分方式,例如:n = 4,{4} {1,3} {2,2} {1,1,2} {1,1,1,1},共5种.由于数据较大,输出M ...

随机推荐

  1. 压测工具使用(vegeta)

    一.压测工具vegeta 1.介绍 Vegeta 是一个用 Go 语言编写的多功能的 HTTP 负载测试工具,它提供了命令行工具和一个开发库. 官方地址:https://github.com/tsen ...

  2. Yii2的使用

    yii2的下载安装 使用下载好的文件配置高级模板,在配置文件配置好数据库和gii 在common模板配置db: 在backend模板配置gii: 配置nginx服务器访问backend和fronten ...

  3. vue-cli:渲染过程理解2(vue init webpack方式创建)

    main.js: 入口文件 import Vue from 'vue' //引入node_modules中的vue import App from './App' //引入当前路径(src)下的App ...

  4. hdu-5536(字典树)

    题意:给你n个数,让你在n个数中选三个,使得(a1+a2)^a3的值最大,a1!=a2!=a3(下标不等于): 解题思路:01字典树可以写,因为数据小,我们可以先把n个数建一颗字典树,然后两边for找 ...

  5. FTC诉高通垄断案苹果从中受益

    据外媒报道,美国当地时间周二,美国联邦贸易委员会(FTC)诉芯片制造商高通公司(Qualcomm)垄断案进入了终结辩论阶段.这意味着,这起审判也进入最后阶段,它可能颠覆高通在智能手机时代取得成功的至关 ...

  6. 删除本地git的远程分支和远程删除git服务器的分支【转】

    转- 删除本地git的远程分支和远程删除git服务器的分支 在项目中使用git管理代码后,有些时候会创建很多不同名称的分支,以此区分各个分支代码功能. 而随着代码的合并,以前的分支就可能不再需要保存了 ...

  7. BZOJ4205卡牌配对——最大流+建图优化

    题目描述 现在有一种卡牌游戏,每张卡牌上有三个属性值:A,B,C.把卡牌分为X,Y两类,分别有n1,n2张. 两张卡牌能够配对,当且仅当,存在至多一项属性值使得两张卡牌该项属性值互质,且两张卡牌类别不 ...

  8. BZOJ3435[Wc2014]紫荆花之恋——动态点分治(替罪羊式点分树套替罪羊树)

    题目描述 强强和萌萌是一对好朋友.有一天他们在外面闲逛,突然看到前方有一棵紫荆树.这已经是紫荆花飞舞的季节了,无数的花瓣以肉眼可见的速度从紫荆树上长了出来.仔细看看的话,这个大树实际上是一个带权树.每 ...

  9. Python多进程、多线程、协程

    转载:https://www.cnblogs.com/huangguifeng/p/7632799.html 首先我们来了解下python中的进程,线程以及协程! 从计算机硬件角度: 计算机的核心是C ...

  10. P1020 导弹拦截

    思路:贪心思路 拿比飞来的导弹高并且高度和飞来的导弹最相近的拦截系统去接, 如果全部都比导弹矮,那就新开一个拦截系统 #include<cstdio> #include<string ...