bzoj3238 差异
思路
观察题目中的式子,可以发现前两项是定值。所以只需要求出最后一项就行了。
然后题目就转化为了求字符串中所有后缀的\(lcp\)长度之和。
可以想到用后缀数组。在后缀数组上两个后缀的\(lcp\)长度表现为两个后缀排名之间的\(height\)的最小值。
所以现在问题就又转化为了在\(height\)数组上求所有区间最小值之和。
这个可以用单调栈做到。
代码
/*
* @Author: wxyww
* @Date: 2019-01-30 19:14:49
* @Last Modified time: 2019-01-30 20:49:38
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<bitset>
using namespace std;
typedef long long ll;
#define int ll
const int N = 500010;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int sa[N],rk[N],height[N],c[N],x[N],y[N];
char s[N];
int m,n;
void get_sa() {
for(int i = 1;i <= m;++i) c[i] = 0;
for(int i = 1;i <= n;++i) ++c[x[i] = s[i]];
for(int i = 2;i <= m;++i) c[i] += c[i - 1];
for(int i = n;i >= 1;--i) sa[c[x[i]]--] = i;
for(int k = 1;k <= n;k <<= 1) {
int num = 0;
for(int i = n - k + 1;i <= n; ++i) y[++num] = i;
for(int i = 1;i <= n;++i) if(sa[i] > k) y[++num] = sa[i] - k;
for(int i = 2;i <= m;++i) c[i] = 0;
for(int i = 1;i <= n;++i) ++c[x[i]];
for(int i = 1;i <= m;++i) c[i] += c[i - 1];
for(int i = n;i >= 1;--i) sa[c[x[y[i]]]--] = y[i];
swap(x,y);
num = 0;
x[sa[1]] = ++num;
for(int i = 2;i <= n;++i) {
if(y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k]) x[sa[i]] = num;
else x[sa[i]] = ++num;
}
if(num == n) break;
m = num;
}
}
int h[N],q[N],tail;
void get_height() {
for(int i = 1;i <= n;++i) rk[sa[i]] = i;
int k = 0;
for(int i = 1;i <= n;++i) {
if(rk[i] == 1) continue;
if(k) --k;
int j = sa[rk[i] - 1];
while(j + k <= n && i + k <= n && s[j + k] == s[i + k]) ++k;
h[i] = height[rk[i]] = k;
}
}
ll work() {
int tail = 0;
ll now = 0,ans = 0;
for(int i = 1; i <= n;++i) {
while(height[i] < height[q[tail]] && tail) now -= height[q[tail]] * (q[tail] - q[tail - 1]),tail--;
q[++tail] = i;
now += height[i] * (q[tail] - q[tail - 1]);
ans += now;
}
return ans;
}
int get(int x,int y) {
int ans = 1e9;
int l = min(rk[x],rk[y]),r = max(rk[x],rk[y]);
for(int i = l + 1;i <= r;++i) ans = min(ans,height[i]);
return ans;
}
signed main() {
scanf("%s",s + 1);
n = strlen(s + 1);
m = 'z';
get_sa();
get_height();
ll ans = 0;
for(int i = 1;i <= n;++i)
ans += i * (i - 1) + i * (n - i);
ll LC = 2ll * work();
cout<<ans - LC;
return 0;
}
bzoj3238 差异的更多相关文章
- [bzoj3238]差异(后缀数组+单调栈)
显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...
- 【BZOJ3238】差异(后缀自动机)
[BZOJ3238]差异(后缀自动机) 题面 BZOJ 题解 前面的东西直接暴力算就行了 其实没必要算的正正好 为了方便的后面的计算 我们不考虑\(i,j\)的顺序问题 也就是先求出\(\sum_{i ...
- 【BZOJ3238】[AHOI2013]差异
[BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...
- 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- BZOJ3238 [Ahoi2013]差异 【SAM or SA】
BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...
- 【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1561 Solved: 734[Submit][Status] ...
- 【bzoj3238】 Ahoi2013—差异
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 (题目链接) 题意 给出一个字符串,求${\sum_{1<=i<j<=n} ...
随机推荐
- Linux基础操作二
编程语言的作用及与操作系统和硬件的关系 编程语言的作用:用来定义计算机程序的形式,程序员用它来编写程序,进而控制其向计算机发出指令,使计算机完成人类布置的任务. 编程语言的作用及与操作系统和硬件的关系 ...
- Service Account和RBAC授权
一.介绍 Service Account概念的引入是基于这样的使用场景:运行在pod里的进程需要调用Kubernetes API以及非Kubernetes API的其它服务.Service Accou ...
- 让PC端页面在手机端显示缩小版的解决方法
做页面的时候我们做好pC端页面时,因编辑那边需求,在手机端页面也应该是缩小版,不能乱的.在网上找了各种解决方案,经实验,这种是可以的: 在head里边加上这两句meta <meta name= ...
- Eclipse:报错Failed to read artifact descriptor for org.springframework.boot:spring-boot-autoconfigure:jar:2.1.2.
导入SVN下载的MAVEN项目时springboot报错: pom.xml文件报错 Failed to read artifact descriptor for org.springframework ...
- 九、.net core用orm继承DbContext(数据库上下文)方式操作数据库
一.创建一个DataContext普通类继承DbContext 安装程序集:Pomelo.EntityFrameworkCore.MySql 二.配置连接字符串(MySql/SqlServer都 ...
- 第四十天 并发编程之io模型
一.今日内容 1.网络IO的两个阶段 waitdata copydata 2阻塞IO模型 之前写的都是阻塞 无论多线程 多进程 还是 进程池 线程池 3.非阻塞IO模型 在非阻塞IO中 需要不断循环询 ...
- 大学实验3指导:利用单链表实现A-B
实验目的:深入理解单链表的建立及操作 实验内容: 1.建立单链表A与B 2.实现主要的函数,查找.插入.删除等 3.实现操作A-B 步骤1:包含必要的函数库,对结构体LNode中的抽象数据类型Elem ...
- Mysql 千万级别数据数据查询
1.构建数据 --创建MyISAM模式表方便批量跑数据 CREATE TABLE `logs1` ( `id` int(11) NOT NULL AUTO_INCREMENT, `logtype` v ...
- 我的代码库-Java8实现FTP与SFTP文件上传下载
有网上的代码,也有自己的理解,代码备份 一般连接windows服务器使用FTP,连接linux服务器使用SFTP.linux都是通过SFTP上传文件,不需要额外安装,非要使用FTP的话,还得安装FTP ...
- 【HDU - 4344】Mark the Rope(大整数分解)
BUPT2017 wintertraining(15) #8E 题意 长度为n(\(n<2^{63}\))的绳子,每隔长度L(1<L<n)做一次标记,标记值就是L,L是n的约数. 每 ...