题目链接

思路

观察题目中的式子,可以发现前两项是定值。所以只需要求出最后一项就行了。

然后题目就转化为了求字符串中所有后缀的\(lcp\)长度之和。

可以想到用后缀数组。在后缀数组上两个后缀的\(lcp\)长度表现为两个后缀排名之间的\(height\)的最小值。

所以现在问题就又转化为了在\(height\)数组上求所有区间最小值之和。

这个可以用单调栈做到。

代码

/*
* @Author: wxyww
* @Date: 2019-01-30 19:14:49
* @Last Modified time: 2019-01-30 20:49:38
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<bitset>
using namespace std;
typedef long long ll;
#define int ll
const int N = 500010;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int sa[N],rk[N],height[N],c[N],x[N],y[N];
char s[N];
int m,n;
void get_sa() {
for(int i = 1;i <= m;++i) c[i] = 0;
for(int i = 1;i <= n;++i) ++c[x[i] = s[i]];
for(int i = 2;i <= m;++i) c[i] += c[i - 1];
for(int i = n;i >= 1;--i) sa[c[x[i]]--] = i;
for(int k = 1;k <= n;k <<= 1) {
int num = 0;
for(int i = n - k + 1;i <= n; ++i) y[++num] = i;
for(int i = 1;i <= n;++i) if(sa[i] > k) y[++num] = sa[i] - k;
for(int i = 2;i <= m;++i) c[i] = 0;
for(int i = 1;i <= n;++i) ++c[x[i]];
for(int i = 1;i <= m;++i) c[i] += c[i - 1];
for(int i = n;i >= 1;--i) sa[c[x[y[i]]]--] = y[i];
swap(x,y);
num = 0;
x[sa[1]] = ++num;
for(int i = 2;i <= n;++i) {
if(y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k]) x[sa[i]] = num;
else x[sa[i]] = ++num;
}
if(num == n) break;
m = num;
}
}
int h[N],q[N],tail;
void get_height() {
for(int i = 1;i <= n;++i) rk[sa[i]] = i;
int k = 0;
for(int i = 1;i <= n;++i) {
if(rk[i] == 1) continue;
if(k) --k;
int j = sa[rk[i] - 1];
while(j + k <= n && i + k <= n && s[j + k] == s[i + k]) ++k;
h[i] = height[rk[i]] = k;
}
}
ll work() {
int tail = 0;
ll now = 0,ans = 0;
for(int i = 1; i <= n;++i) {
while(height[i] < height[q[tail]] && tail) now -= height[q[tail]] * (q[tail] - q[tail - 1]),tail--;
q[++tail] = i;
now += height[i] * (q[tail] - q[tail - 1]);
ans += now;
}
return ans;
}
int get(int x,int y) {
int ans = 1e9;
int l = min(rk[x],rk[y]),r = max(rk[x],rk[y]);
for(int i = l + 1;i <= r;++i) ans = min(ans,height[i]);
return ans;
}
signed main() {
scanf("%s",s + 1);
n = strlen(s + 1);
m = 'z';
get_sa();
get_height(); ll ans = 0;
for(int i = 1;i <= n;++i)
ans += i * (i - 1) + i * (n - i);
ll LC = 2ll * work();
cout<<ans - LC;
return 0;
}

bzoj3238 差异的更多相关文章

  1. [bzoj3238]差异(后缀数组+单调栈)

    显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...

  2. 【BZOJ3238】差异(后缀自动机)

    [BZOJ3238]差异(后缀自动机) 题面 BZOJ 题解 前面的东西直接暴力算就行了 其实没必要算的正正好 为了方便的后面的计算 我们不考虑\(i,j\)的顺序问题 也就是先求出\(\sum_{i ...

  3. 【BZOJ3238】[AHOI2013]差异

    [BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...

  4. 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈

    [BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  5. bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

    [bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...

  6. [bzoj3238][Ahoi2013]差异_后缀数组_单调栈

    差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...

  7. BZOJ3238 [Ahoi2013]差异 【SAM or SA】

    BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...

  8. 【BZOJ-3238】差异 后缀数组 + 单调栈

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1561  Solved: 734[Submit][Status] ...

  9. 【bzoj3238】 Ahoi2013—差异

    http://www.lydsy.com/JudgeOnline/problem.php?id=3238 (题目链接) 题意 给出一个字符串,求${\sum_{1<=i<j<=n} ...

随机推荐

  1. css3特殊图形(气泡)

    一.气泡 效果: body{ background: #dd5e9d; height: 100%; } .paopao { position: absolute; width: 200px; heig ...

  2. 安装sqlprompt

    特别说明:注册机会报毒,安装前请先关闭杀毒软件!下载好附件之后解压,打开SQLPrompt_7.2.0.241.exe按照提示安装完成.安装完成后断网!打开数据库,会在菜单栏中看到SQL Prompt ...

  3. python中的 list (列表)append()方法 与extend()方法的用法 和 区别

    参考: https://www.cnblogs.com/xuchunlin/p/5479119.html

  4. re正则表达式-1

    匹配/查找/替换/分割函数: import re re.match('aa','aabbcc') 返回对象中span为开始位置和结束位置 re.match('aa','bbaacc') #返回值为No ...

  5. js正則表達式

    正則表達式實例化的兩種方式: 字符型 var a=// 對象型var a=new RegExp(,) 修飾符: i:忽略大小寫 g:全局搜索 m:多行搜索 元字符: \轉義字符 \w:字符,數字,下劃 ...

  6. jdbc 接口的用法 Statement和PreparedStatement的区别!

    package cn.zhouzhou; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Resu ...

  7. Ftp、Ftps与Sftp之间的区别

    Ftp FTP 是File Transfer Protocol(文件传输协议)的英文简称,而中文简称为“文传协议”.用于Internet上的控制文件的双向传输.同时,它也是一个应用程序(Applica ...

  8. Windows Server 2012 IIS 8 - 安装SSL证书

    从证书邮件里或者用户中心复制对应的SSL证书文件代码 把代码粘贴到TXT文本文件里面 然后另存为cer或是crt文件,注意编码为ANSI 中级证书和交叉证书也是按以上方法保存为crt或cer文件即可 ...

  9. codeforces104A

    Blackjack CodeForces - 104A Tensor特别喜欢玩扑克,还总是爱发明一些关于扑克牌的游戏,有天他突然脑洞大开想到了这样的一个游戏: 现在有一副52张的扑克牌(没有大小王), ...

  10. 搭建Hexo博客(一)-创建Hexo环境

    Hexo配合github,可以创建自己的博客.基本原理是使用Hexo生成静态页面,发布到github上.在本地需要搭建Hexo环境. 1.安装nodejs 下载并安装NodeJS,官网地址:https ...