bzoj3238 差异
思路
观察题目中的式子,可以发现前两项是定值。所以只需要求出最后一项就行了。
然后题目就转化为了求字符串中所有后缀的\(lcp\)长度之和。
可以想到用后缀数组。在后缀数组上两个后缀的\(lcp\)长度表现为两个后缀排名之间的\(height\)的最小值。
所以现在问题就又转化为了在\(height\)数组上求所有区间最小值之和。
这个可以用单调栈做到。
代码
/*
* @Author: wxyww
* @Date: 2019-01-30 19:14:49
* @Last Modified time: 2019-01-30 20:49:38
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<bitset>
using namespace std;
typedef long long ll;
#define int ll
const int N = 500010;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int sa[N],rk[N],height[N],c[N],x[N],y[N];
char s[N];
int m,n;
void get_sa() {
for(int i = 1;i <= m;++i) c[i] = 0;
for(int i = 1;i <= n;++i) ++c[x[i] = s[i]];
for(int i = 2;i <= m;++i) c[i] += c[i - 1];
for(int i = n;i >= 1;--i) sa[c[x[i]]--] = i;
for(int k = 1;k <= n;k <<= 1) {
int num = 0;
for(int i = n - k + 1;i <= n; ++i) y[++num] = i;
for(int i = 1;i <= n;++i) if(sa[i] > k) y[++num] = sa[i] - k;
for(int i = 2;i <= m;++i) c[i] = 0;
for(int i = 1;i <= n;++i) ++c[x[i]];
for(int i = 1;i <= m;++i) c[i] += c[i - 1];
for(int i = n;i >= 1;--i) sa[c[x[y[i]]]--] = y[i];
swap(x,y);
num = 0;
x[sa[1]] = ++num;
for(int i = 2;i <= n;++i) {
if(y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k]) x[sa[i]] = num;
else x[sa[i]] = ++num;
}
if(num == n) break;
m = num;
}
}
int h[N],q[N],tail;
void get_height() {
for(int i = 1;i <= n;++i) rk[sa[i]] = i;
int k = 0;
for(int i = 1;i <= n;++i) {
if(rk[i] == 1) continue;
if(k) --k;
int j = sa[rk[i] - 1];
while(j + k <= n && i + k <= n && s[j + k] == s[i + k]) ++k;
h[i] = height[rk[i]] = k;
}
}
ll work() {
int tail = 0;
ll now = 0,ans = 0;
for(int i = 1; i <= n;++i) {
while(height[i] < height[q[tail]] && tail) now -= height[q[tail]] * (q[tail] - q[tail - 1]),tail--;
q[++tail] = i;
now += height[i] * (q[tail] - q[tail - 1]);
ans += now;
}
return ans;
}
int get(int x,int y) {
int ans = 1e9;
int l = min(rk[x],rk[y]),r = max(rk[x],rk[y]);
for(int i = l + 1;i <= r;++i) ans = min(ans,height[i]);
return ans;
}
signed main() {
scanf("%s",s + 1);
n = strlen(s + 1);
m = 'z';
get_sa();
get_height();
ll ans = 0;
for(int i = 1;i <= n;++i)
ans += i * (i - 1) + i * (n - i);
ll LC = 2ll * work();
cout<<ans - LC;
return 0;
}
bzoj3238 差异的更多相关文章
- [bzoj3238]差异(后缀数组+单调栈)
显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...
- 【BZOJ3238】差异(后缀自动机)
[BZOJ3238]差异(后缀自动机) 题面 BZOJ 题解 前面的东西直接暴力算就行了 其实没必要算的正正好 为了方便的后面的计算 我们不考虑\(i,j\)的顺序问题 也就是先求出\(\sum_{i ...
- 【BZOJ3238】[AHOI2013]差异
[BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...
- 【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- BZOJ3238 [Ahoi2013]差异 【SAM or SA】
BZOJ3238 [Ahoi2013]差异 给定一个串,问其任意两个后缀的最长公共前缀长度的和 1.又是后缀,又是\(lcp\),很显然直接拿\(SA\)的\(height\)数组搞就好了,配合一下单 ...
- 【BZOJ-3238】差异 后缀数组 + 单调栈
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1561 Solved: 734[Submit][Status] ...
- 【bzoj3238】 Ahoi2013—差异
http://www.lydsy.com/JudgeOnline/problem.php?id=3238 (题目链接) 题意 给出一个字符串,求${\sum_{1<=i<j<=n} ...
随机推荐
- jQuery 事件 - triggerHandler() 方法
定义和用法 triggerHandler() 方法触发被选元素的指定事件类型.但不会执行浏览器默认动作,也不会产生事件冒泡. triggerHandler() 方法与 trigger() 方法类似.不 ...
- Android——MaterialDesign之一Toolbar
Toolbar 由于ActionBar设计原因只能存在活动的顶部,从而不能实现MaterialDesign的效果,现在推荐使用Toolbar,继承Actionbar,但是比起它更加的灵活. 设置主题: ...
- 神经网络-SGD-2
接上节: 3.梯度(gradient): def numerical_gradient(f,x): h=1e-5 grad=np.zeros_like(x) for index_x in range( ...
- Netty派生缓冲区
参考https://blog.csdn.net/wangjinnan16/article/details/77972113 派生缓冲区 派生缓冲区,也就是创建一个已经存在的缓冲区的视图,可以调用dup ...
- 本地git连接远程github
git要连接GitHub仓库,是通过SSH加密连接的,所以必须要创建SSH key ssh-key -t rsa -C "youremail@example.com" 这里邮箱必须 ...
- linux audit审计(3)--audit服务配置
audit守护进程可以通过/etc/audit/auditd.conf文件进行配置,默认的auditd配置文件可以满足大多数环境的要求. local_events = yes write_logs = ...
- Codeforces 798D Mike and distribution
题目链接 题目大意 给定两个序列a,b,要求找到不多于个下标,使得对于a,b这些下标所对应数的2倍大于所有数之和. N<=100000,所有输入大于0,保证有解. 因为明确的暗示,所以一定找个. ...
- 【数学建模】day07-数理统计II
方差分析和回归分析. 用数理统计分析试验结果.鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作 ANOVA. 比如:从用不同工艺制作成的灯泡中,各自抽取了若 ...
- 性能测试工具 Locust
https://docs.locust.io/en/latest/quickstart.html
- eolinker——分享项目只需两步
登陆后打开项目概况 然后进入到分享项目界面,可根据自己的需求进行设置