1.汉诺塔

汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

2.算法介绍

当盘子的个数为n时,移动的次数应等于2^n – 1

后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;
若n为奇数,按顺时针方向依次摆放 A C B。
⑴按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
⑵接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
⑶反复进行⑴⑵操作,最后就能按规定完成汉诺塔的移动。
所以结果非常简单,就是按照移动规则向一个方向移动金片:
如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C
 

3.过程进行

用python进行汉诺塔的计算:

其代码为:

def hanoi(n, a, b, c):
if n == :
print(a, '-->', c)
else:
hanoi(n - , a, c, b)
print(a, '-->', c)
hanoi(n - , b, a, c)
# 调用
hanoi(, 'A', 'B', 'C')

其结果为:

但是为了更好地看出汉诺塔的移动过程,我利用了python中的turtle进行绘制

代码如下:

def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(,-i)
plates[i].goto(-,-+*i)
plates[i].showturtle()
return plates def pole_stack():#制造poles的栈
poles=[Stack() for i in range()]
return poles def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-)*,)
plates[mov].goto((tp-)*,)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-)*,-+*l) def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= :
moveTower(plates,poles,height-,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-,withPole,toPole,fromPole) myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[].push(i)
moveTower(plates,poles,n,,,)
myscreen.exitonclick()

输入5结果显示如下:

由于不能显示移动图,只能用几张图来显示

用python turtle实现汉诺塔的移动的更多相关文章

  1. 运用Turtle实现汉诺塔的可视化运行(递归算法)

    运用Turtle实现汉诺塔的可视化运行(递归算法) 汉诺塔问题又名河内塔问题,是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆 ...

  2. Python递归实现汉诺塔

    Python递归实现汉诺塔: def f3(n,x,y,z): if(n==1): print(x,'--->',z) else: f3(n-1,x,z,y) print(x,'--->' ...

  3. python中关于汉诺塔问题和使用turtle库实现其搬运过程

    一.汉诺塔问题 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按 ...

  4. Python实现:汉诺塔问题

    汉诺塔问题不管在任何编程语言里都是经典问题,是采用递归算法的经典案例,该问题可以抽象如下: 一 .3根圆柱A,B,C,其中A上面串了n个圆盘 二 .这些圆盘从上到下是按从小到大顺序排列的,大的圆盘任何 ...

  5. 1.python算法之汉诺塔

    代码如下: #!/usr/bin/env python # encoding: utf-8 """ @author: 侠之大者kamil @file: 汉诺塔.py @t ...

  6. 递归函数初步理解---python实现(汉诺塔问题)

    递归常被用来描述以自相似的方法重复事物的过程,在程序中指的是在函数定义中使用函数自身的方法. 递归是一个树结构,分为递推和回归的过程,当递推到达底部时,就会开始回归. 问题描述:A比B大两岁,B比C大 ...

  7. python下实现汉诺塔

    汉诺塔是印度一个古老传说的益智玩具.汉诺塔的移动也可以看做是递归函数. 我们对柱子编号为a, b, c,将所有圆盘从a移到c可以描述为: 如果a只有一个圆盘,可以直接移动到c: 如果a有N个圆盘,可以 ...

  8. python 递归实现汉诺塔算法

    def move(n,a,b,c): if (n == 1): print ( "第 ", n ," 步: 将盘子由 " ,a ," 移动到 &quo ...

  9. python:递归函数(汉诺塔)

    #hanoi.py def hanoi(n,x,y,z): if n==1: print(x,"-->",z) else: hanoi(n-1,x,z,y) print(x, ...

随机推荐

  1. 好用的截图picpick工具,无需注册,无需破解

    链接:https://pan.baidu.com/s/1KtgF2wPdbRXAAenvrPiPzA 提取码:vasu

  2. python待学习内容

    1.Python中不尽如人意的断言Assertion https://www.cnblogs.com/cicaday/p/python-assert.html 2.Python中的反转字符串问题 ht ...

  3. Java IO、NIO、AIO知识总结

    本文主要讲述下自己对IO的理解,对IO的用法和细则可能没有顾虑到. 本文的理解基于以下几篇文章,他们对各自部分都讲的很细,对我理解IO提供了很大帮助. https://www.cnblogs.com/ ...

  4. Codeforces Round #436 D. Make a Permutation!

    题意:给你n个数字,其中可能有相同的数字,要求你用其他的数字替换这些相同的数字,使得所得的序列字典序最小. Examples Input 43 2 2 3 Output 21 2 4 3 Input ...

  5. padding设置和清除

    padding设置和清除 标签(空格分隔): padding padding介绍: padding:就是内边距的意思,它是边框到内容之间的距离: 另外padding的区域是有背景颜色的.并且背景颜色和 ...

  6. [Solution] 885. Spiral Matrix Ⅲ

    Difficulty: Medium Problem On a 2 dimensional grid with R rows and C columns, we start at (r0, c0) f ...

  7. python--第十六天总结(bootstrap)

    一. 实现原理 网格布局是通过容器的大小,平均分为12份(可以修改),再调整内外边距,和表格布局有点类似但是也存在区别. 实现步骤如下: (1) 数据行.row 必须包含在容器.container 中 ...

  8. java第七章集合框架

    如果想存储多个人物信息可以使用数组实现但是采用数组存以下明显缺陷: 数组长度不变不能适应元素变化情况,若存储大于20个英雄信息则长度不够,若只存储10个则造成内存空间浪费.可用.length获取数组中 ...

  9. 自己测试项目中的log4j配置

    日志生成的位置在项目名下 主要记录的是这样配置,日志的生成的地方 下边是配置文件的内容 log4j.rootLogger=WARN, stdout, file log4j.appender.stdou ...

  10. 20175126《Java程序设计》第七周学习总结

    # 20175126 2016-2017-2 <Java程序设计>第七周学习总结 ## 教材学习内容总结 - 本周学习方式主要为手动敲代码并理解内容学习. - 学习内容为教材第八章,本章主 ...