%ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu
load spectra_data.mat
temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)'; P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2); [Pn_train,inputps] = mapminmax(P_train);
Pn_test = mapminmax('apply',P_test,inputps); [Tn_train,outputps] = mapminmax(T_train);
Tn_test = mapminmax('apply',T_test,outputps); [IW,B,LW,TF,TYPE] = elmtrain(Pn_train,Tn_train,30,'sig',0); tn_sim = elmpredict(Pn_test,IW,B,LW,TF,TYPE); T_sim = mapminmax('reverse',tn_sim,outputps); result = [T_test' T_sim']; E = mse(T_sim - T_test); N = length(T_test);
R2=(N*sum(T_sim.*T_test)-sum(T_sim)*sum(T_test))^2/((N*sum((T_sim).^2)-(sum(T_sim))^2)*(N*sum((T_test).^2)-(sum(T_test))^2)); figure(1)
plot(1:N,T_test,'r-*',1:N,T_sim,'b:o')
grid on
legend('真实值','预测值')
xlabel('样本编号')
ylabel('辛烷值')
string = {'ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu';['(mse = ' num2str(E) ' R^2 = ' num2str(R2) ')']};
title(string)

ELM:ELM基于近红外光谱的汽油测试集辛烷值含量预测结果对比—Jason niu的更多相关文章

  1. RBF:RBF基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat temp = randperm(size(NIR,1)); P_train = NIR(temp(1:50),:)'; T_train = octane(t ...

  2. PLS:利用PLS(两个主成分的贡献率就可达100%)提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu

    load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...

  3. PCA:利用PCA(四个主成分的贡献率就才达100%)降维提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu

    load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...

  4. NN:实现BP神经网络的回归拟合,基于近红外光谱的汽油辛烷值含量预测结果对比—Jason niu

    load spectra_data.mat plot(NIR') title('Near infrared spectrum curve—Jason niu') temp = randperm(siz ...

  5. ELM:ELM实现鸢尾花种类测试集预测识别正确率(better)结果对比—Jason niu

    load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...

  6. GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu

    load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = fe ...

  7. Azure上搭建ActiveMQ集群-基于ZooKeeper配置ActiveMQ高可用性集群

    ActiveMQ从5.9.0版本开始,集群实现方式取消了传统的Master-Slave方式,增加了基于ZooKeeper+LevelDB的实现方式. 本文主要介绍了在Windows环境下配置基于Zoo ...

  8. 机器学习基础:(Python)训练集测试集分割与交叉验证

    在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...

  9. 基于开源软件构建高性能集群NAS系统,包括负载均衡(刘爱贵)

    大数据时代的到来已经不可阻挡,面对数据的爆炸式增长,尤其是半结构化数据和非结构化数据,NoSQL存储系统和分布式文件系统成为了技术浪潮,得到了长足的发展.非结构化数据目前呈现更加快速的增长趋势,IDC ...

随机推荐

  1. iOS 10 申请隐私权限的一些常用选项

    Privacy - Photo Library Usage Description                               访问相册   Privacy - Camera Usag ...

  2. Ubuntu16.04安装Maven3.5.4

      本篇教程在示例步骤中使用了以下版本的软件.操作时,请您以实际软件版本为准. 操作系统:Ubuntu 16.04.3 LTS Maven 版本:Apache Maven 3.5.4 JDK 版本:J ...

  3. VM_Centos7.3_X64_安装Oracle12C 总结笔记

    声明:本文居多内容参考原文来之网络: 一:安装Centos7.3 虚拟机 1:操作系统下载 CentOS 7官方下载地址:https://www.centos.org/download/ 说明:本案例 ...

  4. Confluence 6 当前使用的数据库状态

    进入  > 基本配置(General Configuration) > 问题检查和支持工具(Troubleshooting and support tools) 你就可以看到当前使用的数据 ...

  5. eclipse的安装及使用

    1.安装 2工作区 3透视图添加透视图 关闭和显示各个子视图 点击视图右上角的关闭按钮可以关闭当前视图 可以选择Window-->Show View菜单项打开各个子视图 4创建项目 选择File ...

  6. Allegro PCB Design GXL (legacy) 元器件的坐标文件

    Allegro PCB Design GXL (legacy) version 16.6-2015 一.菜单:Tools > Reports... 二.在“Available Reports ( ...

  7. ps和AI使用过程中的易错点整理

    ps:1.视图工具:1)标尺2)参考线3)网格:视图-->--显示>-->网格4)修改网格:编辑-->首选项>-->参考线.网格和切片 5)放大工具:画布中单击可放 ...

  8. Duplicate 复制数据库 搭建Dataguard

    1 操作系统环境 此处隐藏具体信息 System IP-address db_name db_version Comment         Target DB         Auxiliary D ...

  9. 论文阅读笔记三十四:DSSD: Deconvolutiona lSingle Shot Detector(CVPR2017)

    论文源址:https://arxiv.org/abs/1701.06659 开源代码:https://github.com/MTCloudVision/mxnet-dssd 摘要 DSSD主要是向目标 ...

  10. SQLServer 表连接种类

    SQLServer 有3种物理连接:Nested Loop(嵌套循环).Merge Join(合并联接).Hash Join(哈希联接). T-SQL中的inner/left/right/full j ...