题目地址:CF1097D Makoto and a Blackboard

首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP:

令 \(f_{i,j}\) 为第 \(i\) 次替换后出现 \(p^j\) 的概率

边界:

\[f_{0,c}=1\]

状态转移方程:

\[f_{i,j}=\sum_{t=j}^{c} \frac{f_{i-1,t}}{t+1}\]

目标:

\[\sum_{j=0}^{c}\ f_{k,j}\ p^j\]

考虑一般情况,将 \(n\) 分解质因数:

\[n=\prod_{i=1}^{m} {p_i}^{c_i}\]

按照上述方法DP每个 \({p_i}^{c_i}\)

由于期望是积性函数,直接将所有答案乘起来即可 (我就是卡在这一步上,难受QWQ)

代码:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int K = 10006, C = 56, P = 1000000007;
ll n, f[K][C], inv[C];
int k;
vector<pair<ll, int> > d;

void divide(ll n) {
    for (ll i = 2; i <= sqrt(n); i++)
        if (n % i == 0) {
            int c = 0;
            while (n % i == 0) {
                n /= i;
                ++c;
            }
            d.push_back(make_pair(i, c));
        }
    if (n > 1ll) d.push_back(make_pair(n, 1));
}

ll work(ll p, int c) {
    for (int i = 0; i <= k; i++)
        for (int j = 0; j <= c; j++)
            f[i][j] = 0;
    f[0][c] = 1;
    for (int i = 1; i <= k; i++)
        for (int j = c; j >= 0; j--)
            for (int t = j; t <= c; t++)
                f[i][j] = (f[i][j] + f[i-1][t] * inv[t+1] % P) % P;
    ll ans = 0, now = 1;
    for (int j = 0; j <= c; j++) {
        ans = (ans + f[k][j] * now % P) % P;
        now = now * p % P;
    }
    return ans;
}

int main() {
    inv[1] = 1;
    for (int i = 2; i < C; i++)
        inv[i] = -(P / i) * inv[P%i] % P;
    cin >> n >> k;
    divide(n);
    ll ans = 1;
    for (unsigned int i = 0; i < d.size(); i++)
        ans = ans * work(d[i].first, d[i].second) % P;
    cout << (ans + P) % P << endl;
    return 0;
}

CF1097D Makoto and a Blackboard的更多相关文章

  1. CF1097D Makoto and a Blackboard 积性函数、概率期望、DP

    传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...

  2. cf1097D. Makoto and a Blackboard(期望dp)

    题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...

  3. CF1097D Makoto and a Blackboard(期望)

    link 题目大意:给您一个数 n, 每次从n的所有约数(包含1.n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7. 题解:考虑暴力,我们设f(n,k)代表答案,则有f(n, ...

  4. CF1097D Makoto and a Blackboard(期望)

    [Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...

  5. CF1097D Makoto and a Blackboard 质因数分解 DP

    Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...

  6. D Makoto and a Blackboard

    Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. 【DP】【CF1097D】 Makoto and a Blackboard

    更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...

  8. CF1097D 【Makoto and a Blackboard】

    我们考虑对于一个\(N\),他如果变成了他的约数\(x\),那又会变成一个子问题 我们定义\(F(n, k)\)为n操作k次的期望个数 那么我们有\(F(n, k) =\sum_{x|n} F(x, ...

  9. CodeForces - 1097D:Makoto and a Blackboard (积性)

    Makoto has a big blackboard with a positive integer n written on it. He will perform the following a ...

随机推荐

  1. svn 基础

    安装,略过. 快速创建.配置及启动项目 创建项目 svnadmin create /home/svn/project_name #创建名为project_name的项目(/home/svn为自定义创建 ...

  2. 网络编程基础【day10】:进程与线程介绍(一 )

    本节内容 1.概述 2.什么是进程? 3.什么是线程? 4.什么是携程? 5.存在的疑问 6.总结 一.概述 我们知道,所有的指令的操作都是有CPU来负责的,cpu是来负责运算的.OS(操作系统) 调 ...

  3. JAVA核心技术I---JAVA基础知识(文件系统及java文件基本操作)

    一:文件概述 文件系统是由OS(操作系统)管理的 文件系统和Java进程是平行的,是两套系统 文件系统是由文件夹和文件递归组合而成 文件目录分隔符 –Linux/Unix 用/隔开 –Windows用 ...

  4. PHP7 网络编程(五)进程间通信【待】

    https://blog.csdn.net/godleading/article/details/78391159

  5. jquery遇到的问题

    1.关于$.fn $.fn是指jquery的命名空间,加上fn上的方法及属性,会对jquery实例每一个有效. 如扩展$.fn.abc(),即$.fn.abc()是对jquery扩展了一个abc方法, ...

  6. System.ComponentModel.DataAnnotations.Schema.TableAttribute 同时存在于EntityFramework.dll和System.ComponentModel.DataAnnotations.dll中

    Entity Framework 与 .net4.5 的 System.ComponentModel.DataAnnotations 都有 System.ComponentModel.DataAnno ...

  7. 020、搭建本地Registry(2019-01-11 周五)

    参考https://www.cnblogs.com/CloudMan6/p/6902325.html   Docker Hub 虽然方便,但还是有些限制,比如     1.需要Internet连接,上 ...

  8. Echarts地图悬浮框显示多组series数据以及修改地图大小

    1.如何让echarts的地图悬浮框出现多组series数据? 2.如何更改地图默认的大小? <!DOCTYPE html> <html lang="en"> ...

  9. C++引用以及定义常见问题总结

    最近在做数据结构的实验,暴露了一些典型问题,这里总结一下,避免以后出错 编译时报一个特别长的错:“无法解析的外部符号”,行号还是1,应该看一下定义的成员函数有没有还没有实现就被调用的,实验接口普遍挺多 ...

  10. mac怎么快速回到桌面 隐藏所有窗口

    当你同时按下Option+Command+h键,就能把所有已打开的程序窗口(不包括当前正在运行的应用程序窗口)最小化到Dock栏上.注意不是关闭哦,是最小化哦.如果需要把程序窗口恢复到屏幕上,直接点击 ...