[FJOI2016]神秘数(脑洞+可持久化)
题目描述
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
题解
加入我们查询的区间为l-r。
我们先查询有几个1,然后发现有k个,那么然后我们再查询1-k+1有多少数,如果大于等于k+1的话,那么1到k+1都能表出。
重复这个过程即可,最多跳log次。
代码
- #include<iostream>
- #include<cstdio>
- #define N 100002
- using namespace std;
- typedef long long ll;
- const int maxn=1e9;
- ll tr[N*],a[N];
- int L[N*],R[N*],tot,n,m,T[N];
- inline int rd(){
- int x=;char c=getchar();bool f=;
- while(!isdigit(c)){if(c=='-')f=;c=getchar();}
- while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
- return f?-x:x;
- }
- void ins(int &cnt,int pre,int l,int r,ll x){
- cnt=++tot;
- tr[cnt]=tr[pre]+x;L[cnt]=L[pre];R[cnt]=R[pre];
- if(l==r)return;
- int mid=(l+r)>>;
- if(mid>=x)ins(L[cnt],L[pre],l,mid,x);
- else ins(R[cnt],R[pre],mid+,r,x);
- }
- ll query(int cnt,int pre,int l,int r,ll x){
- // cout<<cnt<<" "<<pre<<" "<<l<<" "<<r<<" "<<tr[cnt]<<" "<<tr[pre]<<endl;
- if(!cnt)return ;
- if(r<=x)return tr[cnt]-tr[pre];
- int mid=(l+r)>>;
- if(mid<x)return tr[L[cnt]]-tr[L[pre]]+query(R[cnt],R[pre],mid+,r,x);
- else return query(L[cnt],L[pre],l,mid,x);
- }
- int main(){
- n=rd();int m;
- for(int i=;i<=n;++i)a[i]=rd(),ins(T[i],T[i-],,maxn,a[i]);
- m=rd();int l,r;
- while(m--){
- l=rd();r=rd();
- // cout<<"****"<<endl;
- ll ans=,now=;
- while(ans<=maxn){
- // cout<<ans<<endl;
- ans=query(T[r],T[l-],,maxn,ans);
- // cout<<ans<<" "<<now<<endl;
- if(ans<now)break;else now=ans+,ans=now;
- }
- printf("%lld\n",ans+);
- }
- return ;
- }
[FJOI2016]神秘数(脑洞+可持久化)的更多相关文章
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
- 【BZOJ4408】[FJOI2016]神秘数(主席树)
[BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...
- 【LG4587】[FJOI2016]神秘数
[LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...
- BZOJ 4408 FJOI2016 神秘数 可持久化线段树
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...
- [bzoj4408][Fjoi2016]神秘数
Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...
- Luogu P4587 [FJOI2016]神秘数
一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
- BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...
- 洛谷 P4587 [FJOI2016]神秘数
大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...
随机推荐
- 上传图片(photoClip)
首先我们需要引入4个js包(这4个包总共106.6KB) <script src="__STATIC__/hammer.min.js" ></script> ...
- Linux中各个目录作用
对于linux新手来说,最感到迷惑的问题之一就是文件都存在哪里呢?特别是对于那些从windows转过来的新手来说,linux的目录结构看起来有些奇怪哦.比如没有C盘,没有分盘符,一大堆不知道用途的文件 ...
- git fetch 更新远程代码到本地仓库
理解 fetch 的关键, 是理解 FETCH_HEAD,FETCH_HEAD指的是: 某个branch在服务器上的最新状态’.这个列表保存在 .Git/FETCH_HEAD 文件中, 其中每一行对应 ...
- Jquery模拟多选框(checkbox)
代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...
- pring @Configuration 和 @Component 区别
一句话概括就是 @Configuration 中所有带 @Bean 注解的方法都会被动态代理,因此调用该方法返回的都是同一个实例. 从定义来看, @Configuration 注解本质上还是 @Com ...
- Excel文件读取的两种方式
1.Pandas库的读取操作 from pandas import read_excel dr=read_excel(filename,header) dr#dataframe数据 dw=DataFr ...
- python之路--前端CSS
一.CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义了如何显示HTML元素,给HTML设置样式,让他更加美观. 当浏览器读到这个样式表, 他就会按照这个样式来对文档进行 ...
- Linux命令替换字符串
:%s/str1/str2/ 用str2替换str1
- Create an Azure SQL database in the Azure portal
Create a SQL database An Azure SQL database is created with a defined set of compute and storage res ...
- 进程创建fork()
简单进程创建例子: #include <stdio.h> #include <sys/types.h> #include <sys/wait.h> #include ...